首页 > 编程语言 >实验三:朴素贝叶斯算法实验

实验三:朴素贝叶斯算法实验

时间:2022-11-11 11:02:01浏览次数:52  
标签:NO 蜷缩 贝叶斯 浊响 算法 实验 硬滑 print YES

【实验目的】

理解朴素贝叶斯算法原理,掌握朴素贝叶斯算法框架。

【实验内容】

针对下表中的数据,编写python程序实现朴素贝叶斯算法(不使用sklearn包),对输入数据进行预测;
熟悉sklearn库中的朴素贝叶斯算法,使用sklearn包编写朴素贝叶斯算法程序,对输入数据进行预测;

【实验报告要求】

对照实验内容,撰写实验过程、算法及测试结果;
代码规范化:命名规则、注释;
查阅文献,讨论朴素贝叶斯算法的应用场景。

 

色泽 根蒂 敲声 纹理 脐部 触感 好瓜
青绿 蜷缩 浊响 清晰 凹陷 碍滑
乌黑 蜷缩 沉闷 清晰 凹陷 碍滑
乌黑 蜷缩 浊响 清晰 凹陷 碍滑
青绿 蜷缩 沉闷 清晰 凹陷 碍滑
浅白 蜷缩 浊响 清晰 凹陷 碍滑
青绿 稍蜷 浊响 清晰 稍凹 软粘
乌黑 稍蜷 浊响 稍糊 稍凹 软粘
乌黑 稍蜷 浊响 清晰 稍凹 硬滑
乌黑 稍蜷 沉闷 稍糊 稍凹 硬滑
青绿 硬挺 清脆 清晰 平坦 软粘
浅白 硬挺 清脆 模糊 平坦 硬滑
浅白 蜷缩 浊响 模糊 平坦 软粘
青绿 稍蜷 浊响 稍糊 凹陷 硬滑
浅白 稍蜷 沉闷 稍糊 凹陷 硬滑
乌黑 稍蜷 浊响 清晰 稍凹 软粘
浅白 蜷缩 浊响 模糊 平坦 硬滑
青绿 蜷缩 沉闷 稍糊 稍凹 硬滑

 

实现前提

条件概率公式,是指在事件B发生的情况下,事件A发生的概率,用来表示。


概率为:

数据:

 1 import numpy as np
 2 import pandas as pd
 3 data_list = [
 4         ['青绿', '蜷缩', '浊响', '清晰', '凹陷', '碍滑', 'YES'],
 5         ['乌黑', '蜷缩', '沉闷', '清晰', '凹陷', '碍滑', 'YES'],
 6         ['乌黑', '蜷缩', '浊响', '清晰', '凹陷', '碍滑', 'YES'],
 7         ['青绿', '蜷缩', '沉闷', '清晰', '凹陷', '碍滑', 'YES'],
 8         ['浅白', '蜷缩', '浊响', '清晰', '凹陷', '碍滑', 'YES'],
 9         ['青绿', '稍缩', '浊响', '清晰', '稍凹', '软粘', 'YES'],
10         ['乌黑', '稍缩', '浊响', '清晰', '稍凹', '软粘', 'YES'],
11         ['乌黑', '稍缩', '浊响', '清晰', '稍凹', '硬滑', 'YES'],
12         ['乌黑', '稍缩', '沉闷', '稍糊', '稍凹', '硬滑', 'NO'],
13         ['青绿', '硬挺', '清脆', '清晰', '平坦', '软粘', 'NO'],
14         ['浅白', '硬挺', '清脆', '模糊', '平坦', '硬滑', 'NO'],
15         ['浅白', '蜷缩', '浊响', '模糊', '平坦', '软粘', 'NO'],        
16         ['青绿', '稍缩', '浊响', '稍糊', '凹陷', '硬滑', 'NO'],
17         ['浅白', '稍缩', '沉闷', '稍糊', '凹陷', '硬滑', 'NO'],
18         ['乌黑', '稍缩', '浊响', '清晰', '稍凹', '软粘', 'NO'],
19         ['浅白', '蜷缩', '浊响', '模糊', '稍凹', '硬滑', 'NO'],
20         ['青绿', '蜷缩', '沉闷', '稍糊', '稍凹', '硬滑', 'NO']
21         ]
22 
23 classes_list = ['色泽','根蒂','敲声','纹理','脐部','触感','好瓜']
24 property_list = [
25         '青绿','乌黑','浅白',
26         '蜷缩','稍蜷','硬挺',
27         '浊响','沉闷','清脆',
28         '清晰','稍糊','模糊',
29         '凹陷','平坦','稍凹',
30         '硬滑','软粘',]
import pandas as pd
import numpy  as np

class NaiveBayes:
    def __init__(self):
        self.model = {}#key 为类别名 val 为字典PClass表示该类的该类,PFeature:{}对应对于各个特征的概率

    # def calEntropy(self, y): # 计算熵
    #     valRate = y.value_counts().apply(lambda x : x / y.size) # 频次汇总 得到各个特征对应的概率
    #     valEntropy = np.inner(valRate, np.log2(valRate)) * -1  #矩阵内积相乘
    #     return valEntropy

    def fit(self, xTrain, yTrain = pd.Series()):
        if not yTrain.empty:#如果不传,自动选择最后一列作为分类标签
            xTrain = pd.concat([xTrain, yTrain], axis=1)   #按列合并
        self.model = self.buildNaiveBayes(xTrain) 
        return self.model

    def buildNaiveBayes(self, xTrain):
        yTrain = xTrain.iloc[:,-1]   #获取特征

        yTrainCounts = yTrain.value_counts()# 得到各个特征对应的概率

        yTrainCounts = yTrainCounts.apply(lambda x : (x + 1) / (yTrain.size + yTrainCounts.size)) #使用了拉普拉斯平滑 分别计算YES和NO的概率
        # print("1111:",yTrainCounts)
        # print("@@@")
        retModel = {} #使用拉普拉斯的模型
        for nameClass, val in yTrainCounts.items():
            retModel[nameClass] = {'PClass': val, 'PFeature':{}}
        # print("@@")
        # print(retModel) 
        # print("@@")   
        propNamesAll = xTrain.columns[:-1]  #训练数据
        # print("@@")
        # print(xTrain[propNamesAll]) 
        # print("@@")   
        allPropByFeature = {}
        for nameFeature in propNamesAll:
            allPropByFeature[nameFeature] = list(xTrain[nameFeature].value_counts().index)#获取每列的特征
        # print("@@")
        # print(allPropByFeature) 
        # print("@@")   
        for nameClass, group in xTrain.groupby(xTrain.columns[-1]): #根据最后一列分组
            for nameFeature in propNamesAll:
                eachClassPFeature = {}
                propDatas = group[nameFeature]
                propClassSummary = propDatas.value_counts()# 频次汇总 得到各个特征对应的概率
                for propName in allPropByFeature[nameFeature]:
                    if not propClassSummary.get(propName):
                        propClassSummary[propName] = 0#如果有属性没有,那么自动补0
                Ni = len(allPropByFeature[nameFeature])
                propClassSummary = propClassSummary.apply(lambda x : (x + 1) / (propDatas.size + Ni))#使用了拉普拉斯平滑   计算条件概率
                for nameFeatureProp, valP in propClassSummary.items():
                    eachClassPFeature[nameFeatureProp] = valP
                retModel[nameClass]['PFeature'][nameFeature] = eachClassPFeature
        # print("@@")
        # print(propClassSummary) 
        # print("@@")
        return retModel

    def predictBySeries(self, data):
        curMaxRate = None
        curClassSelect = None
        for nameClass, infoModel in self.model.items():
            rate = 0
            rate += np.log(infoModel['PClass'])
            PFeature = infoModel['PFeature']     #每个特征的概率
     

            for nameFeature, val in data.items():
                propsRate = PFeature.get(nameFeature)
                if not propsRate:
                    continue
                rate += np.log(propsRate.get(val, 0))#使用log加法避免很小的小数连续乘,接近零
                #print(nameFeature, val, propsRate.get(val, 0))
            #print(nameClass, rate)
            if curMaxRate == None or rate > curMaxRate:
                curMaxRate = rate
                curClassSelect = nameClass
        # print("@@")
        # print(PFeature)
        # print("@@")
        return curClassSelect
    def predict(self, data):
        if isinstance(data, pd.Series):     #对比类型
            return self.predictBySeries(data)
        return data.apply(lambda d: self.predictBySeries(d), axis=1)

dataTrain = data_df

naiveBayes = NaiveBayes()
treeData = naiveBayes.fit(dataTrain)

import json
print(json.dumps(treeData, ensure_ascii=False))

pd = pd.DataFrame({'预测值':naiveBayes.predict(dataTrain), '正取值':dataTrain.iloc[:,-1]})
print(pd)
print('正确率:%f%%'%(pd[pd['预测值'] == pd['正取值']].shape[0] * 100.0 / pd.shape[0]))
{"NO": {"PClass": 0.5263157894736842, "PFeature": {"0": {"浅白": 0.4166666666666667, "青绿": 0.3333333333333333, "乌黑": 0.25}, "1": {"稍缩": 0.4166666666666667, "蜷缩": 0.3333333333333333, "硬挺": 0.25}, "2": {"浊响": 0.4166666666666667, "沉闷": 0.3333333333333333, "清脆": 0.25}, "3": {"稍糊": 0.4166666666666667, "模糊": 0.3333333333333333, "清晰": 0.25}, "4": {"稍凹": 0.4166666666666667, "平坦": 0.3333333333333333, "凹陷": 0.25}, "5": {"硬滑": 0.5833333333333334, "软粘": 0.3333333333333333, "碍滑": 0.08333333333333333}}}, "YES": {"PClass": 0.47368421052631576, "PFeature": {"0": {"乌黑": 0.45454545454545453, "青绿": 0.36363636363636365, "浅白": 0.18181818181818182}, "1": {"蜷缩": 0.5454545454545454, "稍缩": 0.36363636363636365, "硬挺": 0.09090909090909091}, "2": {"浊响": 0.6363636363636364, "沉闷": 0.2727272727272727, "清脆": 0.09090909090909091}, "3": {"清晰": 0.8181818181818182, "稍糊": 0.09090909090909091, "模糊": 0.09090909090909091}, "4": {"凹陷": 0.5454545454545454, "稍凹": 0.36363636363636365, "平坦": 0.09090909090909091}, "5": {"碍滑": 0.5454545454545454, "软粘": 0.2727272727272727, "硬滑": 0.18181818181818182}}}}
    预测值  正取值
0   YES  YES
1   YES  YES
2   YES  YES
3   YES  YES
4   YES  YES
5   YES  YES
6   YES  YES
7   YES  YES
8    NO   NO
9    NO   NO
10   NO   NO
11   NO   NO
12   NO   NO
13   NO   NO
14  YES   NO
15   NO   NO
16   NO   NO
正确率:94.117647%

 sklearn包中的朴素贝叶斯

 1 from sklearn.model_selection import train_test_split
 2 import numpy as np
 3 data_list = [#青绿 0 乌黑 1 浅白 2  蜷缩 0 稍缩 1  硬挺 2 浊响 0 沉闷 1 清脆 2 清晰 0 稍糊 1 模糊 2 平坦 0 稍凹 1 凹陷 2 碍滑 0 软粘 1 硬滑 2
 4         [0, 0, 0, 0, 2, 0, 1],
 5         [1, 0, 1, 0, 2, 0, 1],
 6         [1, 0, 0, 0, 2, 0, 1],
 7         [0, 0, 1, 0, 2, 0, 1],
 8         [2, 0, 0, 0, 2, 0, 1],
 9         [0, 1, 0, 0, 1, 1, 1],
10         [1, 1, 0, 0, 1, 1, 1],
11         [1, 1, 0, 0, 1, 2, 1],
12         [1, 1, 1, 1, 1, 2, 0],
13         [0, 2, 2, 0, 0, 1, 0],
14         [2, 2, 2, 2, 0, 2, 0],
15         [2, 0, 0, 2, 0, 1, 0],        
16         [0, 1, 0, 1, 2, 2, 0],
17         [2, 1, 1, 1, 2, 2, 0],
18         [1, 1, 0, 0, 1, 1, 0],
19         [2, 0, 0, 2, 1, 2, 0],
20         [0, 0, 1, 1, 1, 2, 0]
21         ]
22 target = np.array([0,1,2,3,4,5,6],dtype='float32')
23 data = np.array(data_list,dtype='float32')
1 from sklearn.naive_bayes import GaussianNB
2 from sklearn.model_selection import train_test_split
3 x_train,x_test,y_train,y_test = train_test_split(data.T,target,random_state=1)   #按比例分割数据
4 nb_clf = GaussianNB() #实例化模型
5 nb_clf.fit(x_train,y_train)  #模型训练
6 a=nb_clf.predict(x_test)    #预测
7 acc_score = nb_clf.score(x_test,y_test)   #查看模型分数

 

 

预测结果:

 

 

标签:NO,蜷缩,贝叶斯,浊响,算法,实验,硬滑,print,YES
From: https://www.cnblogs.com/jiangshi-1/p/16868466.html

相关文章

  • 实验三:朴素贝叶斯算法
    【实验目的】理解朴素贝叶斯算法原理,掌握朴素贝叶斯算法框架。【实验内容】针对下表中的数据,编写python程序实现朴素贝叶斯算法(不使用sklearn包),对输入数据进行预测;熟悉s......
  • 学习笔记-综合案例,hook时机 ,制作dex,算法还原思路
    综合实战spawn/attach时机的选择各种主动调用/直接撸完各种hook以及构造函数动态加载自己的dexz3:约束求解/符号执行0x01通过案例来进行实战1.这里又放了个新......
  • 3 、Vue 【进阶】- diff 算法
    虚拟dom虚拟DOM(VirtualDOM)是对DOM的JS抽象表示,它们是JS对象,能够描述DOM结构和关系。应用的各种状态变化会作用于虚拟DOM,最终映射到DOM上。......
  • 实验三:朴素贝叶斯算法
    【实验目的】理解朴素贝叶斯算法原理,掌握朴素贝叶斯算法框架。【实验内容】针对下表中的数据,编写python程序实现朴素贝叶斯算法(不使用sklearn包),对输入数据进行预测;熟悉s......
  • 数值分析实验3:LU分解及列主元高斯去法
    LU分解及列主元高斯去法(一)实验目的与要求1. 通过编程计算实践,理解体会LU分解及列主元高斯去法的思想。2. 通过编程计算实践,熟练各种算法的计算流程。3. 通过各种......
  • 数值分析实验4:线性方程组的迭代法解法
    线性方程组的迭代法解法(一)实验目的与要求1.通过编程计算实践,理解体会古典迭代法的思想。2.通过编程计算实践,熟练各种算法的计算流程。3.通过各种方法对同一题目的求解,......
  • 算法模拟测试网站
    超好用的算法模拟网站https://alchemist-al.com/各种算法手动步骤模拟 ......
  • 拓端tecdat|R语言代写用Rcpp加速Metropolis-Hastings抽样估计贝叶斯逻辑回归模型的参
    在最近的一篇文章中,我描述了一个Metropolis-in-Gibbs采样器,用于估计贝叶斯逻辑回归模型的参数。 这篇文章就此问题进行了研究,以展示Rcpp如何帮助克服这一瓶颈。 TLDR:只需......
  • 拓端tecdat|excel代写数据分析——贝叶斯分析预估
    贝叶斯定理是关于随机事件A和B的条件概率(或边缘概率)的一则定理。例如:P(A|B)是在B发生的情况下A发生的可能性。使用情况:贝叶斯定理用于投资决策分析是在已知相关项目B的资......
  • 拓端tecdat|Python代写 实现贝叶斯线性回归模型
     在本文中,我们将在贝叶斯框架中引入回归建模,并使用PyMC3MCMC库进行推理。我们将首先回顾经典或频率论者的多重线性回归方法。然后我们将讨论贝叶斯如何考虑线性回归。用Py......