• 2024-03-24Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
    省去冗长的数学证明,直接看文章的贡献:提出了新的Loss函数以及延迟re-weighting的trick。并在多个数据集,包括情感分类、图像分类进行实验。Motivation&Methods:LDAM(Label-Distribution-AwareMargie)Losstailclasses的信息基本上较少,而且部署的模型通常很大,因此对tailclasse
  • 2024-03-03Paper Reading: Density‑based weighting for imbalanced regression
    目录研究动机文章贡献本文方法DenseWeight稀有度度量权重函数DenseLoss实验结果实验整体的设置合成数据集实验实验设置实验结果对比实验实验设置降水量预测任务优点和创新点PaperReading是从个人角度进行的一些总结分享,受到个人关注点的侧重和实力所限,可能有理解不到位的地方。
  • 2024-02-03【阅读笔记】对比度增强-《Efficientcontrast enhancement using adaptive gamma correction with weighting distributi
    2013年发表在TIP上的对比度增强算法AGCWD(Efficientcontrastenhancementusingadaptivegammacorrectionwithweightingdistribution)提出了一种自动映射技术,通过亮度像素的伽马校正和概率分布来提高调暗图像的亮度。为了增强视频,所提出的图像增强方法使用关于每帧之间差异的