2024-06-20[AAAI2024]Out-of-Distribution Detection in Long-Tailed Recognition with Calibrated Outlier Class Lea这篇文章设置的问题是:考虑长尾分布的训练集下,对测试集上的OOD样本进行检测。作者在训练集中引入了openset样本学习异常表征,以OCL(OutlierClassLearn)为baseline,训练时引入prototype方法,推理时对logits进行调整校准。问题背景DNNs会把OOD(out-of-distribution)样本误分类为ID(in-di