网站首页
编程语言
数据库
系统相关
其他分享
编程问答
droped
2023-04-22
深度学习基础入门篇[六(1)]:模型调优:注意力机制[多头注意力、自注意力],正则化【L1、L2,Dropout,Drop Connect】等
1.注意力机制在深度学习领域,模型往往需要接收和处理大量的数据,然而在特定的某个时刻,往往只有少部分的某些数据是重要的,这种情况就非常适合Attention机制发光发热。举个例子,图2展示了一个机器翻译的结果,在这个例子中,我们想将”whoareyou”翻译为”你是谁”,传统的模型处理方式是
2023-04-21
深度学习基础入门篇[六(1)]:模型调优:注意力机制[多头注意力、自注意力],正则化【L1、L2,Dropout,Drop Connect】等
深度学习基础入门篇[六(1)]:模型调优:注意力机制[多头注意力、自注意力],正则化【L1、L2,Dropout,DropConnect】等1.注意力机制在深度学习领域,模型往往需要接收和处理大量的数据,然而在特定的某个时刻,往往只有少部分的某些数据是重要的,这种情况就非常适合Attention机制发光发热。举
2023-04-21
深度学习基础入门篇[六(1)]:模型调优:注意力机制[多头注意力、自注意力],正则化【L1、L2,Dropout,Drop Connect】等
1.注意力机制在深度学习领域,模型往往需要接收和处理大量的数据,然而在特定的某个时刻,往往只有少部分的某些数据是重要的,这种情况就非常适合Attention机制发光发热。举个例子,图2展示了一个机器翻译的结果,在这个例子中,我们想将”whoareyou”翻译为”你是谁”,传统的模型处理方式是