网站首页
编程语言
数据库
系统相关
其他分享
编程问答
SimAM
2024-10-22
YOLOv11模型改进-注意力-引入简单无参数注意力模块SimAM 提升小目标和遮挡检测
本篇文章将介绍一个新的改进机制——卷积和注意力融合模块SimAM ,并阐述如何将其应用于YOLOv11中,显著提升模型性能。首先,SimAM是一种用于卷积神经网络的简单且无参数的注意力模块,它基于神经科学理论定义能量函数来计算3-D注意力权重,能有效提升网络
2024-10-08
YOLOv8改进 - 注意力篇 - 引入SimAM注意力机制
一、本文介绍作为入门性篇章,这里介绍了SimAM注意力在YOLOv8中的使用。包含SimAM原理分析,SimAM的代码、SimAM的使用方法、以及添加以后的yaml文件及运行记录。二、SimAM原理分析SimAM官方论文地址:SimAM文章SimAM官方代码地址:SimAM源代码SimAM注意力机制:是一种轻量级的自
2024-08-25
Unet改进7:在不同位置添加SimAM注意力机制||无参数的卷积神经网络注意模块
本文内容:在不同位置添加SimAM注意力机制目录论文简介1.步骤一2.步骤二3.步骤三4.步骤四论文简介在本文中,我们为卷积神经网络(ConvNets)提出了一个概念简单但非常有效的注意力模块。与现有的通道智能和空间智能注意力模块相比,我们的模块在不向原始网络添加参数的情况
2024-07-21
YOLOv10改进 | 独家创新- 注意力篇 | YOLOv10引入结合SimAM和SKAttention形成全新的SKAM注意力机制和C2f_SKAM(全网独家创新)
1.SKAM介绍 SKAM(SimAMandSKAttentionModule)注意力机制结合了SimAM和SKAttention的优点,能够在图像特征提取中表现出更为优异的性能。 SimAM注意力机制 SimAM(SimplifiedAttentionModule)是一种简单但有效的注意力机制,旨在增强
2024-07-11
YOLOv10改进 | 独家创新- 注意力篇 | YOLOv10引入结合SimAM和Channel Attention形成全新的CSimAM注意力机制和C2f_CSimAM(全网独家创新)
1.CSimAM介绍 CSimAM(ChannelSimAM)注意力机制结合了SimAM和通道注意力机制(ChannelAttention),在图像特征提取上展现出比单独使用SimAM更为优异的性能。以下是详细描述: SimAM注意力机制 SimAM(SimilarityAttentionMechanism)通过计
2024-06-04
YOLOv8改进 | 注意力机制 | 添加SimAM注意力机制【全网独家+附完整代码】