- 2024-12-31yolov5单目测距与相机标定流程和c++单目测距RKNN部署
相机模型、相机标定及基于YOLOv5的单目测距实现1.前言注意此方法不需要预先知道物体尺寸,不需要参照物体!!!!在摄像头成像的过程中,物体反射的光线通过摄像头的凸透镜聚焦到成像器件上,形成一张二维图像。这一过程将三维世界中的物体转换为二维图像,导致深度信息丢失,因此单目摄
- 2024-12-20【鸿睿创智开发板试用】RK3568 NPU的人工智能推理测试
目录引言驱动移植例程编译修改build.sh执行编译运行测试部署libc的库文件执行测试程序结语引言鸿睿创智的H01开发板是基于RK3568芯片的,瑞芯微芯片的一大特色就是提供了NPU推理的支持。本文将对其NPU推理进行测试。驱动移植H01的开发板已经移植好了RKNN的驱动程
- 2024-12-10在Windows环境下的rknn-toolkit环境搭建
首先安装好conda,我是用的是anaconda,miniconda也可以。下载rknn_toolkit的轮子。可以直接在瑞芯微的git仓库中下载,地址为:github.com/rockchip-linux/rknn-toolkit/releases。我这里下载的是1.7.5版本的。选择rknn-toolkit-v1.7.5-packages.zip下载,之后解压,pipinstallrknn_t
- 2024-11-25【北京迅为】itop-3562开发板在Linux系统中使用NPU
3.1在Linux系统中使用NPU下载rknpu2并拷贝到虚拟机Ubuntu,如下图所示,RKNPU2提供了访问RK3562芯片NPU的高级接口。 下载地址为“iTOP-RK3562开发板\02_【iTOP-RK3562开发板】开发资料\12_NPU使用配套资料\01_rknpu2工具”对于RK3562来说,Linux平
- 2024-12-09SpringBoot开发过程中经常遇到问题解决方案分享
目录1. SpringBoot应用启动缓慢2. 数据库连接池配置问题3. SpringBoot应用无法连接外部服务4. 配置文件读取不生效5. SpringBoot应用的日志输出不完整6. SpringBoot中的@Transactional事务管理问题1. SpringBoot应用启动缓慢问题原因:SpringBoot应用启
- 2024-11-28聪明办法学Python chap 0 chap 1
Chap0安装一、Conda环境配置:为什么要使用conda,或者说为什么要配环境我之前在贴吧上看到过一个乐子图片:十三合一洗发水相信我,你不会想使用这样的一瓶洗发水1,换源阿里巴巴开源镜像站https://developer.aliyun.com/mirror/清华大学开源软件镜像站:https://help.mirrors.
- 2024-09-25正点原子RK3588(一)——开机测试+AI初探
一、adbadbshell,进入板子的根目录exit,退出到linuxadbpull板子linux(从板子到linux)adbpushlinux板子(从linux到板子)二、测试AI功能2.1resnet18importcv2importnumpyasnpimportplatformfromsynset_labelimportlabelsfromrknnlite.apiimportRKNNLite#decic
- 2024-08-08RK3588安装rknn-toolkit-lite2
RK3588安装rknn-toolkit-lite2一、下载rknn-toolkit2包:sudogitclonehttps://gitclone.com/github.com/airockchip/rknn-toolkit2二、安装进入到所在包的位置,然后解压:unziprknn-toolkit2-master.zip进入rknn-toolkit-lite2所在路径:cdrknn-toolkit2-master/rknn-t
- 2024-08-01YOLOv8n部署到RK3588开发板全流程(pt→onnx→rknn模型转换、板端后处理检测)
YOLOv8n部署到RK3588开发板全流程文章目录前言一、模型训练二、配置用于pt模型转onnx模型的环境三、pt→onnx模型转换四、配置onnx转rknn模型的虚拟环境五、onnx转rknn模型六、RK3588板端部署前言小白博主,第一次写博客记录自己YOLOv8n部署RK3588开发板的全流程,记
- 2024-07-25RK3588 RKNN环境部署
前言,官方提供两种部署环境,其中按照官方说法为了完全运行RKNN环境采用Docker的部署环境方案。1.安装Docker环境 (1)检查卸载老版本Docker sudoapt-getremovedockerdocker-enginedocker.iocontainerdrunc (2)安装Docker依赖 sudoapt-getinstallca-certifica
- 2024-07-23【瑞芯微RV1126(深度学习模型部署)】部署自己训练的yolov8-seg,实现足型检测!
前言如果按照本系列第一篇博客那样交叉编译了opencv,那本文有些步骤就不用了,比如交叉编译工具链的下载,所以自己斟酌步骤。本系列第一篇:https://blog.csdn.net/m0_71523511/article/details/139636367本系列第二篇:https://blog.csdn.net/m0_71523511/article/details/14058
- 2024-07-21RK3562 NPU开发环境搭建
如何在Ubuntu系统(PC)上搭建RK3562 Buildroot Linux的NPU开发环境?即电脑端运行Ubuntu系统,而RK3562板卡运行Buildroot Linux系统的情况下,搭建RK3562 NPU开发环境。下面是相应的步骤(对应的命令):1、下载RKNN相关仓库在Ubuntu电脑端执行如下命令:mkdir-p~/bigger_disk/rknpu
- 2024-07-11【ZhangQian AI模型部署】目标检测、SAM、3D目标检测、旋转目标检测、人脸检测、检测分割、关键点、分割、深度估计、车牌识别、车道线识别
目标检测【yolov10部署rknn、地平线、tensorRT、C++】【yoloworld部署rknn、地平线、tensorRT、C++】【yolov9部署rknn、地平线、tensorRT、C++】【yolov8部署rknn、地平线、tensorRT、C++】【yolov7部署rknn、地平线、tensorRT】【yolov6部署rknn、地平
- 2024-05-16RK3576开发板NPU分享:探索6T强大性能,智能化应用无限可能!
RKNNSDK快速上手指南开发板:ArmSoM-W3,ArmSoM-Sige7,ArmSoM-Sige5,ArmSoM-AIM7OS:Debian11/12目的:本文介绍如何使用rk的npusdk。作为瑞芯微8nm高性能AIOT平台,RK3576/RK3588NPU性能可谓十分强大,6TOPS设计能够实现高效的神经网络推理计算。这使得RK3576/RK3588在图像识别
- 2024-05-10配置orangepi5pro运行rknn版本的yolov5
摘要配置orangepi5pro运行rknn版本的yolov5,使用npu进行目标检测.关键信息板卡:orangepi5pro芯片:RK3588S环境:rknn2转换工具:rknn-tool-kit2:1.5.0系统:ubuntu20.04原理简介npu简介NPU(NeuralProcessingUnit,神经处理单元)是一种专门设计用于加速人工智能计算的硬件加
- 2024-04-25基于北京迅为iTOP-RK3588大语言模型部署测试
人工智能(AI)领域中的大模型(LargeModel)逐渐成为研究的热点。大模型,顾名思义,是指拥有海量参数和高度复杂结构的深度学习模型。它的出现,不仅推动了AI技术的突破,更为各行各业带来了革命性的变化。RK3588是瑞芯微推出的新一代旗舰级高端处理器,采用8nm工艺设计,搭载四核A76+四核A55的
- 2024-03-06AI赋能RK3588核心板在智慧消防智能监管系统的解决方案
随着科技的飞速发展,机器视觉技术在消防领域的应用日益广泛。而RK3588核心板作为高性能、低功耗的处理器,正成为机器视觉消防产品的得力助手。 这款核心板集成了多种强大功能,内置NPU,支持INT4/INT8/INT16/FP16混合运算,运算能力高达6Tops。支持深度学习框架,基于Tens
- 2024-02-05瑞芯微电子RV1126芯片环境搭建&SSD模型转换指南
引子国产AI芯片这个集合,一直想补充的完整点。故翻了翻陈年的笔记,找到当年使用瑞芯微电子出的一款芯片RV1126的使用笔记,当时拿到的是一款基于RV1126的IP摄像头,在此整理记录下。OK,让我们开始吧。一、文档首先拿到官方的SDK包,解压后,SDK文档目录:rv1109_1126_sdk\RV1109_1126\docs\S
- 2023-09-21iTOP-RK3588开发板更新RKNN模型
RKNN是RockchipNPU平台(也就是开发板)使用的模型类型,是以.rknn结尾的模型文件。RKNNSDK提供的demo程序中默认自带了RKNN模型,在RKNNSDK的examples/rknn_yolov5_demo/model/RK3588/目录下,如下图所示:如使用自己的模型需要转换成rknn模型,转换方法可以参考
- 2023-09-08迅为RK3588在 Linux 系统中使用 NPU
下载rknpu2并拷贝到虚拟机Ubuntu,RKNPU2提供了访问rk3588芯片NPU的高级接口。下载地址为“iTOP-3588开发板\02_【iTOP-RK3588开发板】开发资料\12_NPU使用配套资料\01_rknpu2工具”对于RK3588来说,Linux平台RKNNSDK库文件为librknnrt.so,RK3588平台RKNNSDK包
- 2023-09-08迅为RK3588在 Linux 系统中使用 NPU
下载rknpu2并拷贝到虚拟机Ubuntu,RKNPU2提供了访问rk3588芯片NPU的高级接口。下载地址为“iTOP-3588开发板\02_【iTOP-RK3588开发板】开发资料\12_NPU使用配套资料\01_rknpu2工具”对于RK3588来说,Linux平台RKNNSDK库文件为librknnrt.so,RK3588平台RKNNSD
- 2023-09-07Lnton羚通视频分析算法开发yolov8训练与rknn模型导出并在RK3588部署的详细步骤
Lnton羚通的算法算力云平台以其突出的特点成为一款优秀的解决方案。它的高性能、高可靠性、高可扩展性和低成本使得用户能够高效地进行复杂的计算任务。同时,丰富的算法库和工具以及支持用户上传和部署自定义算法的功能进一步提升了平台的灵活性和个性化能力。一、环境验证(一)板端验
- 2023-06-20迅为视频 | RKNPU2 从入门到实践RK3568/RK3568开发板教程
迅为基于瑞芯微RK3568和RK3588处理器设计开发的两款开发板都自带NPU,RK3568自带1T算力的NPU、RK3588自带6T算力的NPU,且这两款开发板使用的都是RKNPU2。 (RKNPU发展历程) RKNPU2较RKNPU1有较大的提升,但市面上关于这方面的资料却寥寥无几,导致很多想学习这方面知识的小