- 2024-12-13转载:【AI系统】谷歌 TPUv2 训练芯片
在2017年,谷歌更新了他们的TPU序列。谷歌将这一代TPU称之为“用于训练神经网络的特定领域超级计算机”,那么显而易见,相比于专注于推理场景的TPUv1,TPUv2将自己的设计倾向放到了训练相关的场景。如果回顾历史,在2017年前后,深度学习跨时代的工作如雨后春笋般涌现,也就是那年
- 2024-12-13转载:【AI系统】谷歌 TPU v1-脉动阵列
本文深入探讨了谷歌TPUv1的架构和设计原理。我们将解析TPUv1芯片的关键元素,包括DDR3DRAM、矩阵乘法单元(MXU)、累加器和控制指令单元。重点介绍脉动阵列(SystolicArray)的工作原理,它是TPU的核心,通过数据的流水线式处理实现高效的矩阵乘法计算。此外,我们还将对比TPUv1与
- 2024-12-11转载:【AI系统】谷歌 TPU v1-脉动阵列
本文深入探讨了谷歌TPUv1的架构和设计原理。我们将解析TPUv1芯片的关键元素,包括DDR3DRAM、矩阵乘法单元(MXU)、累加器和控制指令单元。重点介绍脉动阵列(SystolicArray)的工作原理,它是TPU的核心,通过数据的流水线式处理实现高效的矩阵乘法计算。此外,我们还将对比TPUv1与
- 2024-12-11转载:【AI系统】谷歌 TPUv2 训练芯片
在2017年,谷歌更新了他们的TPU序列。谷歌将这一代TPU称之为“用于训练神经网络的特定领域超级计算机”,那么显而易见,相比于专注于推理场景的TPUv1,TPUv2将自己的设计倾向放到了训练相关的场景。如果回顾历史,在2017年前后,深度学习跨时代的工作如雨后春笋般涌现,也就是那年