网站首页
编程语言
数据库
系统相关
其他分享
编程问答
Densest
2024-08-02
论文阅读:Most Probable Densest Subgraphs
摘要本文提出了一种在不确定图中发现最有可能稠密子图(MPDS)的新方法。不确定图中的每条边都有存在概率,使得计算稠密子图变得複杂。作者定义了稠密子图概率,并证明了计算该概率是#P难的。为了解决这个问题,设计了基于抽样的高效近似算法,并提供了准确性保证。实验结果表明,该方法
2024-08-01
论文阅读:Scalable Algorithms for Densest Subgraph Discovery
摘要密集子图发现(DSD)作为图数据挖掘的基础问题,旨在从图中找到密度最高的子图。虽然已有许多DSD算法,但它们在处理大规模图时往往不可扩展或效率低下。本文提出了在无向图和有向图上求解DSD问题的高效并行算法,通过优化迭代过程和减少迭代次数来计算核心数。同时引入了新的子
2024-07-29
论文摘要:Efficient Algorithms for Densest Subgraph Discovery on Large Directed Graphs
背景在很多应用中,例如欺诈检测、社区挖掘和图压缩等,需要从有向图中找到密度最高的子图,这被称为有向最密子图问题(DirectedDensestSubgraph,DDS)。DDS问题在社交网络、Web图和知识图谱等领域有着广泛的应用。例如,在社交网络中,可以用来检测假粉丝,在Web图中,可以用来发现网络