• 2024-12-04uniapp中echarts的正确集成方式:Vue2与Vue3组合式API双重视角
    uniapp作为一款出色的跨平台前端框架,以其一套代码多端运行的特性,深受开发者喜爱。echarts作为数据可视化领域的佼佼者,提供了丰富的图表类型和灵活的配置选项。本文将带你领略在uniapp中使用echarts的两种不同方式:Vue2的传统方法和Vue3的组合式API。一、uniapp集成echarts的准
  • 2024-08-12AI模型常见的压缩技术分类
    文章目录PruningQuantizationKnowledgedistillationPruningPruning把模型里一些不重要的权重砍掉,减少网络模型中参数量和计算量,同时尽量保证模型的性能不受影响。QuantizationQuantization.模型量化就是将训练好的深度神经网络的权值,激活值等从高精度转化成低精
  • 2024-06-23MODEL COMPRESSION VIA DISTILLATION AND QUANTIZATION翻译
    摘要:深度神经网络(DNNs)继续取得重大进展,解决了从图像分类到翻译或增强学习的任务。这个领域的一个受到广泛关注的方面是在资源受限环境中(如移动或嵌入式设备)高效执行深度模型。本文聚焦于这一问题,并提出了两种新的压缩方法,这两种方法共同利用了权重量化和大型网络(称为“教师”网络)
  • 2024-04-07DISTILLM: Towards Streamlined Distillation for Large Language Models
    本文是LLM系列文章,针对《DISTILLM:TowardsStreamlinedDistillationforLargeLanguageModels》的翻译。DISTILLM:面向大型语言模型的流线蒸馏摘要1引言2背景3DISTILLM4实验5分析与讨论6相关工作7结论摘要知识蒸馏(KD)被广泛用于将教师模型压缩为
  • 2023-12-042023ICCV_FSI Frequency and Spatial Interactive Learning for Image Restoration in Under-Display Camer
     三.Network 1.  2.FLB:没看懂是怎么分离的水平和竖直方向 3.SLB:每一层保留一半的通道特征用于细化,其余的在特征重构后输出(没看懂)。Multi-distillationNetwork 超分辨网络的Multi-distillationNetwork(2019ACMMM_LightweightImageSuper-ResolutionwithIn
  • 2023-11-06Linkless Link Prediction via Relational Distillation
    目录概符号说明LLP代码GuoZ.,ShiaoW.,ZhangS.,LiuY.,ChawlaN.V.,ShahN.andZhaoT.Linklesslinkpredictionviarelationaldistillation.ICML,2023.概从GNN教师模型蒸馏到MLP学生模型.符号说明\(G=(\mathcal{V,E})\),无向图;\(\mathbf{A}\in
  • 2023-10-318 Innovative BERT Knowledge Distillation Papers That Have Changed The Landscape of NLP
    8InnovativeBERTKnowledgeDistillationPapersThatHaveChangedTheLandscapeofNLPContemporarystate-of-the-artNLPmodelsaredifficulttobeutilizedinproduction.Knowledgedistillationofferstoolsfortacklingsuchissuesalongwithseveralothe
  • 2023-10-18论文阅读:Knowledge Distillation via the Target-aware Transformer
    摘要Knowledgedistillationbecomesadefactostandardtoimprovetheperformanceofsmallneuralnetworks.知识蒸馏成为提高小型神经网络性能的事实上的标准。Mostofthepreviousworksproposetoregresstherepresentationalfeaturesfromtheteachertothes
  • 2023-09-26Unbiased Knowledge Distillation for Recommendation
    目录概UnKD代码ChenG.,ChenJ.,FengF.,ZhouS.andHeX.Unbiasedknowledgedistillationforrecommendation.WSDM,2023.概考虑流行度偏差的知识蒸馏,应用于推荐系统.UnKDMotivation就不讲了,感觉不是很强烈.方法很简单,就是将按照流行度给items进行
  • 2023-09-22DE-RRD: A Knowledge Distillation Framework for Recommender System
    目录概DE-RRDDistillationExperts(DE)RelaxedRankingDistillation(RRD)代码KangS.,HwangJ.,KweonW.andYuH.DE-RRD:Aknowledgedistillationframeworkforrecommendersystem.CIKM,2020.概知识蒸馏应用于推荐系统(同时迁移隐层+输出层特征).DE-RRD
  • 2023-09-22Topology Distillation for Recommender System
    目录概TopologyDistillationFullTopologyDistillation(FTD)HierarchicalTopologyDistillation(HTD)代码KangS.,HwangJ.,KweonW.andYuH.Topologydistillationforrecommendersystem.KDD,2021.概一种基于关系的知识蒸馏,这种关系的处理比较特殊.Topolog
  • 2023-07-25模型蒸馏
    https://www.microsoft.com/en-us/research/blog/three-mysteries-in-deep-learning-ensemble-knowledge-distillation-and-self-distillation/