• 2024-05-16[COCI2008-2009 #2] PERKET
    传送锚点:https://www.luogu.com.cn/problem/P2036题目描述Perket是一种流行的美食。为了做好Perket,厨师必须谨慎选择食材,以在保持传统风味的同时尽可能获得最全面的味道。你有$n$种可支配的配料。对于每一种配料,我们知道它们各自的酸度$s$和苦度$b$。当我们添加配料时,总
  • 2023-09-26P6411 [COCI2008-2009#3] MATRICA 题解
    水题。发现根据限制\(M_{i,j}=M_{j,i}\)可以知道除了主对角线上的点,其他的点都是成对出现的。也就是说如果有一条要求的\(a_i\)为奇数,那么至少有一个\(c_i\)在主对角线上。记\(S=\sum\limits_{i=1}^{k}(a_i\equiv1\pmod2)\),即有\(S\)个要求中\(a_i\)为奇数。主对
  • 2023-08-19P6429 [COCI2008-2009#1] JEZ 题解
    题目传送门:Click。某蒟蒻看见这道题,想了足足一个晚上,过后茅塞顿开,故作此篇。感谢神犇的题解。看题目数据范围:\(1\leqr,c\leq10^6,1\leqk\leq10^{12}\),显然打暴力\(\mathcal{O}(rc)\)的时间复杂度是行不通的。必须做到近似于\(mathcal{O}(r)\)的时间复杂度。观察题
  • 2023-07-25题解 P7679 【[COCI2008-2009#5] JABUKA】
    postedon2021-07-0717:38:14|under题解|source设题目中分给每个朋友的苹果数为\(x\),显然有\(x\vertr\landx\vertg\),也就是\(x\vert\gcd(r,g)\)。我们都知道,如果\(a\timesb=c\),那\(a\)和\(b\)都是\(c\)的因数,也就是说因数都是成对出现的(注意特判完全平方