网站首页
编程语言
数据库
系统相关
其他分享
编程问答
CF1928E
2024-02-15
CF1928E题解
ModularSequence题目传送门题解发现\(a_i+y\)与\(a_i\bmody\)均不改变\(a_i\)模\(y\)的余数,所以答案序列的每个元素均可表示为\(x\bmody+ky\)的形式,先让\(s\)减去\(n\times(x\bmody)\),再除以\(y\),这样原序列可以被划分为一个从\(\lfloor\dfrac{x}{y}\rflo
2024-02-12
CF1928E Modular Sequence
原题链接设\(p=x\bmody\)。思考发现本质是\(x,x+y,x+2y,\cdots,x+k_1y,p,p+y,p+2y,\cdots,p+k_2y,p,p+y,p+2y,\cdots,p+k_3y\cdots\),即每次二操作会使\(y\)的系数变为\(0\)。枚举第\(i\)次操作是第一次二操作,记\(s_1=s-(i\timesx+y\times\dfrac{i(i-1)}{2}+(n-i)\time
2024-02-11
CF1928E 题解
\(\textbf{ProblemStatement}\)给定\(n,x,y,s\),构造长度为\(n\)的序列\(a\),满足:\(a_1=x\)。\(\foralli\in[2,n],a_i=a_{i-1}+y\)或者\(a_i=a_{i-1}\bmody\)。\(\sum\limits_{i=1}^na_i=s\)。给出构造或报告无解。\(\sumn,\sums\le