• 2024-08-11Word2Vec模型介绍
    Word2Vec是一种用于生成词向量的模型,由TomasMikolov等人在2013年提出。它通过从大量语料库中学习,捕捉词汇之间的语义关系。Word2Vec主要包括两种模型架构:1.CBOW(ContinuousBagofWords)模型CBOW模型通过上下文词来预测中心词。它的工作原理如下:输入:上下文词(例如,选取
  • 2024-08-11Word2Vec模型之CBOW
    CBOW(ContinuousBagofWords)是一种常用于自然语言处理的词嵌入模型,属于Word2Vec的一部分。CBOW模型的目标是通过上下文词来预测中心词。它通过在大规模语料库中学习词汇之间的共现关系,生成词向量表示。CBOW模型的工作原理上下文窗口:CBOW模型的核心思想是利用上下文窗口中的词
  • 2024-07-02tensor版CBOW
    小小技能1key=['a','b','c']value=[1,2,3]vocab=dict(zip(key,value))print(vocab)运行效果:{'a':1,'b':2,'c':3}2key=['a','b','c']vocab=dict(zip(key,ran