• 2024-03-18BSLTR-梯度下降代码的处理
    是否更新x取决于其是否被定义为nn.Parameter。这里是什么意思?在PyTorch中,是否将一个张量(x)更新(在训练过程中通过梯度下降算法调整其值)依赖于它是否被定义为nn.Parameter。nn.Parameter是Tensor的一个子类,专门用于定义模型参数,这些参数是可训练的,也就是说它们可以在模型训练过程
  • 2024-03-16BSLTR-规则的层次化挖掘
    根据提供的描述,我们可以明确三种简单顺序约束和三种链式顺序约束,以及它们之间的层次关系,用于在数据集中挖掘有意义的活动模式。下面,我将基于这些描述,为每种约束类型提供一个具体的挖掘逻辑实现。简单顺序约束Response(a,b):最后一个b出现在最后一个a之后。Precedence(a,b):
  • 2024-03-14BSLTR-初始化向量的优化
    要使得初始化的用户向量X在训练过程中得到优化,我们需要对前述示例进行一些修改,确保X是一个可训练的参数。在PyTorch中,这意味着我们需要将X定义为一个Parameter或者设置requires_grad=True。然而,由于X代表原始数据,通常我们不直接将其视为模型参数进行优化。相反,我们优化模型来学习