- 2024-12-15Debiasing Model Updates for Improving Personalized Federated Training为改进个性化联合培训而进行去重模型更新(元学习)适用于凸和非凸
第一部分:解决的问题联邦学习(FL)是一种分布式机器学习方法,允许设备在不共享本地数据的情况下协同训练模型。在个性化联邦学习中,目标是为每个设备训练个性化模型,而不是一个通用的全局模型。然而,由于设备之间数据分布的异质性,传统方法会导致模型偏差。第二部分:解决的方法/idea
- 2024-12-07Day42--练习--选择题
Day42--练习--选择题以下是做错的题目题目3:创建一个名为Person的类,类中有一个私有属性name(类型为String),定义一个公有的get方法来获取这个属性的值,方法的代码框架如下:publicclassPerson{privateStringname;public____get(){returnname;}}
- 2024-06-06SpaceX 首席火箭着陆工程师 MIT论文详解:非凸软着陆最优控制问题的控制边界和指向约束的无损凸化
上一篇blog翻译了LarsBlackmore(LarsBlackmoreisprincipalrocketlandingengineeratSpaceX)的文章,SpaceX使用CVXGEN生成定制飞行代码,实现超高速机载凸优化。利用地形相对导航实现了数十米量级的导航精度,着陆器在着陆过程中成像行星表面并将特征与机载地图匹配
- 2024-05-26非凸优化收敛性证明框架
\chapter{非凸优化}\section{非凸优化中的重要概念}\subsection{次微分}\begin{definition}{Frechet次微分}适当函数\(f\),如果\(\forallx\in\)dom$f\(,则\)f\(在\)x\(处的Frechet次微分记为\)\overset{-}{\partial}f(x)$,它的定义是:$$\overset{-}{\partial}f(x)=\left\l