只能说。。。
Description
给你两个可重集 \(A,B\),\(A,B\) 的元素个数都为 \(n\),它们中每个元素的大小 \(x\in [1,n]\)。请你分别找出 \(A,B\) 的子集,使得它们中的元素之和相等。\(n\leq 10^6\)。
Solution
将找子集强化成找子段(不知道怎么想的),令 \(sa_{n}\) 表示 \(A\) 的前缀和,\(sb_{n}\) 表示 \(B\) 的前缀和,即找到点对 \((x_{1},y_{1}),(x_{2},y_{2})\),使得 \(sa_{x_{1}}-sa_{x_{2}}=sb_{y_{1}}-sb_{y_{2}}\)。
我们让 \(sa_{n}\leq sb_{n}\),则对于每个 \(sa_{i}\),都可以找到一个 \(sb_{j}\geq sa_{i},sb_{j}-sa_{i}\in[0,n)\)。又因为 \(i\) 有 \(n+1\) 种取值,则一定存在一组 \((i,j)\) 的 \(sb_{j}-sa_{i}\) 重复,即得上述点对。
Code
#include <bits/stdc++.h>
using namespace std;
using ci = const int;
using u32 = uint32_t;
using i64 = int64_t;
using u64 = uint64_t;
template<class T> inline void Max(T &x, const T &y) { if (x < y) x = y; }
template<class T> inline void Min(T &x, const T &y) { if (y < x) x = y; }
using pii = pair<int, int>;
const int N = 1e6 + 5;
int n, a[N], b[N];
bool vis[N];
pii tong[N];
i64 sa[N], sb[N];
void op(int l, int r) {
cout << r - l + 1 << endl;
for (int i = l; i <= r; ++i) cout << i << " ";
cout << endl;
}
void output(int al, int ar, int bl, int br) {
op(al, ar); op(bl, br);
}
void solve1() {
int tp = 0;
for (int i = 0, v; i <= n; ++i) {
while (sb[tp] < sa[i]) ++tp;
v = sb[tp] - sa[i];
if (vis[v]) return output(tong[v].first + 1, i, tong[v].second + 1, tp);
vis[v] = 1, tong[v] = { i, tp };
}
}
void solve2() {
int tp = 0;
for (int i = 0, v; i <= n; ++i) {
while (sa[tp] < sb[i]) ++tp;
v = sa[tp] - sb[i];
if (vis[v]) return output(tong[v].first + 1, tp, tong[v].second + 1, i);
vis[v] = 1, tong[v] = { tp, i };
}
}
int main() {
#ifndef ONLINE_JUDGE
freopen(".in", "r", stdin);
freopen(".out", "w", stdout);
#endif
ios_base::sync_with_stdio(0);
cin.tie(0); cout.tie(0);
memset(tong, 0xff, sizeof tong);
cin >> n;
for (int i = 1; i <= n; ++i) cin >> a[i];
for (int i = 1; i <= n; ++i) cin >> b[i];
for (int i = 1; i <= n; ++i) sa[i] = sa[i - 1] + a[i];
for (int i = 1; i <= n; ++i) sb[i] = sb[i - 1] + b[i];
if (sa[n] < sb[n]) solve1();
else solve2();
return 0;
}
标签:const,using,CF618F,题解,void,int,Double,sb,sa
From: https://www.cnblogs.com/cqbzljh/p/18685463