首页 > 其他分享 >Star Schema and Snowflake schema

Star Schema and Snowflake schema

时间:2025-01-13 10:23:43浏览次数:6  
标签:tables Star dimension Snowflake Table schema data ID Schema

The Star Schema and Snowflake Schema are two types of dimensional models used in data warehousing to organize data for analytical queries. Both schemas are designed around a fact table that holds measurable data (facts), and dimension tables that provide context or descriptive attributes. However, they differ in the normalization level of the dimension tables.

1. Star Schema

Key Characteristics:

  • Fact Table: Contains quantitative data, such as sales, revenue, or quantity, and typically includes foreign keys that reference the dimension tables.
  • Dimension Tables: These tables hold descriptive attributes related to the facts, such as customer information, product details, time periods, etc. In a Star Schema, dimension tables are denormalized. That is, each dimension table contains all the relevant attributes (e.g., a single "Product" table contains product name, category, manufacturer, etc.).
  • Structure: The fact table is at the center, with dimension tables surrounding it, forming a star-like structure.

Example (Sales Data):

  • Fact Table: Sales
    • Columns: Sale_ID, Product_ID, Customer_ID, Date_ID, Amount
  • Dimension Tables:
    • Product Table: Product_ID, Product_Name, Category, Manufacturer
    • Customer Table: Customer_ID, Customer_Name, Address, Email
    • Time Table: Date_ID, Date, Month, Year

Advantages:

  • Simple and Intuitive: The structure is easy to understand and simple to query. The fact table is connected to dimension tables in a straightforward manner.
  • Faster Query Performance: Since dimension tables are denormalized, fewer joins are required, which often leads to better performance in queries.

Disadvantages:

  • Data Redundancy: Denormalization leads to data duplication in the dimension tables (e.g., product category or manufacturer details may be repeated for each sale), which can result in higher storage usage.
  • Data Integrity: Redundant data increases the chance of inconsistencies and makes updates harder to maintain.

2. Snowflake Schema

Key Characteristics:

  • Fact Table: Similar to the Star Schema, it contains measurable data and foreign keys to reference the dimension tables.
  • Dimension Tables: Unlike the Star Schema, the dimension tables in a Snowflake Schema are normalized. That is, related attributes are split into separate tables to reduce redundancy. For instance, a “Product” table may be divided into “Product,” “Product Category,” and “Manufacturer” tables.
  • Structure: The schema resembles a snowflake shape due to the additional level of normalization in the dimension tables, where each dimension can be split into multiple related tables.

Example (Sales Data, Normalized):

  • Fact Table: Sales
    • Columns: Sale_ID, Product_ID, Customer_ID, Date_ID, Amount
  • Dimension Tables:
    • Product Table: Product_ID, Product_Name, Category_ID
    • Category Table: Category_ID, Category_Name
    • Manufacturer Table: Manufacturer_ID, Manufacturer_Name
    • Customer Table: Customer_ID, Customer_Name, Address_ID
    • Address Table: Address_ID, Address, City, State, Zip
    • Time Table: Date_ID, Date, Month, Year

Advantages:

  • Reduced Data Redundancy: Since the dimension tables are normalized, data is not duplicated, which reduces storage space and improves data consistency.
  • Better Data Integrity: With fewer repetitions of data, the risk of inconsistency is lower.

Disadvantages:

  • Complex Queries: The normalization means more tables and more joins in queries, which can make queries more complex and slower compared to the Star Schema.
  • More Maintenance: The normalization process requires more effort to maintain and update the schema as it involves multiple tables.

Key Differences between Star and Snowflake Schema

AspectStar SchemaSnowflake Schema
Normalization Dimension tables are denormalized Dimension tables are normalized
Table Structure Simple, with direct connections More complex, with multiple related tables
Performance Faster query performance (fewer joins) Slower query performance (more joins)
Storage Higher storage usage due to redundancy Lower storage usage due to normalization
Data Redundancy Higher redundancy in dimension tables Lower redundancy in dimension tables
Query Complexity Easier to write and understand queries More complex queries due to normalization
Maintenance Easier to maintain More maintenance required due to normalization
Data Integrity Potential for data inconsistency Better data integrity due to normalization

When to Use Each Schema:

  • Star Schema: Best for performance-intensive applications where speed is crucial (like in reporting and OLAP cubes). It is ideal for data marts where ease of access and simplicity are prioritized over storage optimization.

  • Snowflake Schema: Suitable for large-scale data warehouses where data integrity, storage efficiency, and normalization are more important. It is often used when dealing with complex datasets with hierarchical relationships between dimensions, and where the complexity of queries is less of a concern.

标签:tables,Star,dimension,Snowflake,Table,schema,data,ID,Schema
From: https://www.cnblogs.com/zhangzhihui/p/18668037

相关文章

  • webman: start.php的应用
    一,查看帮助:$phpstart.phphelpUsage:phpyourfile<command>[mode]Commands:startStartworkerinDEBUGmode.Usemode-dtostartinDAEMONmode.stopStopworker.Usemode-gtostopgracefully.......
  • wx.startDeviceMotionListening
    wx.startDeviceMotionListening(Objectobject)基础库2.3.0开始支持,低版本需做兼容处理。以Promise风格调用:支持小程序插件:支持,需要小程序基础库版本不低于2.9.1功能描述开始监听设备方向的变化。参数Objectobject属性类型默认值必填说明interva......
  • wx.startGyroscope
    wx.startGyroscope(Objectobject)基础库2.3.0开始支持,低版本需做兼容处理。以Promise风格调用:支持小程序插件:支持,需要小程序基础库版本不低于2.9.1功能描述开始监听陀螺仪数据。参数Objectobject属性类型默认值必填说明intervalstringnormal......
  • get_started_3dsctf_2016 1
    gets造成栈溢出,返回地址填入getflag函数打开看getflag函数,它功能是打开flag文件读取并输出。如果我们的exp传入两个参数a1,a2还不够,因为程序若是不正常退出是没有回显的。(本题没有开启标准输入输出,输入输出会在缓冲区呆着,而exit执行后会将缓冲区输出,即输出flag)在functions里搜......
  • 在keil中ARMCC v6 编译器中用C语言实现ARM cortex-M4 实现startup代码
    #include"stdint.h"#defineStack_Size0x00000800U#defineHeap_Size0x00000400Uuint8_tStack_Mem[Stack_Size]__attribute__((section("STACK")));uint32_t*const__initial_sp=(uint32_t*)&Stack_Mem[Stack_Size];uint8_tHeap_......
  • 001_Star women_7A_基础_12
    HaveyoueverheardofWangZhenyi(1768-1797)?Perhapsmostofusdidn'tknowthisgreatnameuntilshewasintroducedinaCCTVprogramme.WangZhenyiwasagreatChineses_____.ShewasbornintheQingDynasty.Atthattime,girlshadnochancet......
  • NFCAdapter.startDiscovery
    NFCAdapter.startDiscovery(Objectobject)基础库2.11.2开始支持,低版本需做兼容处理。以Promise风格调用:不支持小程序插件:支持微信iOS版:不支持微信Android版:支持相关文档:近场通信(NFC)功能描述参数Objectobject属性类型默认值必填说明su......
  • 【AI论文】rStar-Math: 小语言模型实现数学推理达到甚至超越o1水平
    再开一个系列来记录学习AI论文的心得。之前断断续续读过10来篇,最近也听到李想还有几位AI大咖还是公司大佬分享他们是不读AI论文的,但会听自家公司AI团队每周的论文解读会来了解最新进展。这个是有道理的,但咱一线码农没有这个福利,论文还是靠自己。^-^这篇论文的Hugging链接在rSt......
  • 2024年终总结:5000 Star,10w 下载量,这是我交出的开源答卷
    你好,我是Kagol,个人公众号:前端开源星球。2024年,我做前端开发工作满10年啦!这10年我一直在开发前线,做过电商项目、广告平台、项目管理系统等业务,目前主要专注于前端组件库建设和开源社区运营,OpenTiny开源社区运营,FluentEditor和VueDevUI作者,前端开源星球公众号运营者,热爱开......
  • 12.9k star,这个可定制的 Windows 卸载工具你必须拥有,完全免费,清理干净,还不伤系统(带私
    你是否因为电脑中堆积如山的应用程序而感到头疼?想清理无用的软件,却发现手动卸载一个个点击实在太耗时间?而即使卸载了,残留的文件、注册表项仍然占用你的系统资源?别担心!今天我要向你介绍一个强大的开源工具——BulkCrapUninstaller(简称BCU),它能轻松解决这些烦恼。项目简介BC......