遗传算法是一种基于自然选择和遗传学原理的优化算法,也很适合解决任务分配问题, 比如达到任务总耗时最短, 比如再兼顾每个工人工作量相对均衡.
下面代码中 TaskAssignmentProblem(单目标优化) 和 BalancedTaskAssignmentProblem(多目标优化) .
package com.example;
import java.util.ArrayList;
import java.util.List;
import org.uma.jmetal.algorithm.Algorithm;
import org.uma.jmetal.algorithm.examples.AlgorithmRunner;
import org.uma.jmetal.algorithm.multiobjective.nsgaii.NSGAIIBuilder;
import org.uma.jmetal.operator.crossover.impl.IntegerSBXCrossover;
import org.uma.jmetal.operator.mutation.impl.IntegerPolynomialMutation;
import org.uma.jmetal.operator.selection.SelectionOperator;
import org.uma.jmetal.operator.selection.impl.BinaryTournamentSelection;
import org.uma.jmetal.problem.Problem;
import org.uma.jmetal.problem.integerproblem.impl.AbstractIntegerProblem;
import org.uma.jmetal.solution.integersolution.IntegerSolution;
import org.uma.jmetal.util.AbstractAlgorithmRunner;
import org.uma.jmetal.util.JMetalLogger;
import org.uma.jmetal.util.fileoutput.SolutionListOutput;
import org.uma.jmetal.util.fileoutput.impl.DefaultFileOutputContext;
public class App {
public static void main(String[] args) {
// 1. 定义问题
Problem<IntegerSolution> problem = null;
//problem = new TaskAssignmentProblem();
problem = new BalancedTaskAssignmentProblem();
// 2. 设置交叉和变异算子 和 设置选择算子
// 定义交叉操作: SBX交叉
double crossoverProbability = 0.9;
double crossoverDistributionIndex = 20.0;
var crossover = new IntegerSBXCrossover(crossoverProbability, crossoverDistributionIndex);
// 定义变异操作: 多项式变异
double mutationProbability = 1.0 / problem.numberOfVariables();
double mutationDistributionIndex = 20.0;
var mutation = new IntegerPolynomialMutation(mutationProbability, mutationDistributionIndex);
// 定义选择操作: 二元竞标赛选择
SelectionOperator<List<IntegerSolution>, IntegerSolution> selection = new BinaryTournamentSelection<IntegerSolution>();
// 3. 迭代次数和种群大小
int populationSize = 100;
// 4. 定义算法(NSGA-II)
Algorithm<List<IntegerSolution>> algorithm = new NSGAIIBuilder<IntegerSolution>(problem, crossover, mutation,
populationSize)
.setSelectionOperator(selection)
.setMaxEvaluations(25000)
.build();
// 5. 运行算法
AlgorithmRunner algorithmRunner = new AlgorithmRunner.Executor(algorithm).execute();
List<IntegerSolution> solutionSet = algorithm.result();
long computingTime = algorithmRunner.getComputingTime();
JMetalLogger.logger.info("Total execution time: " + computingTime + "ms");
// 6. 打印非支配排序结果,每个solution包含决策变量取值和目标函数取值.
for (IntegerSolution solution : solutionSet) {
JMetalLogger.logger.info("Solution: " + solution);
}
JMetalLogger.logger.info("Solution Count: " + solutionSet.size());
// 7. save to tsv files
new SolutionListOutput(solutionSet).setVarFileOutputContext(new DefaultFileOutputContext("VAR.csv", ","))
.setFunFileOutputContext(new DefaultFileOutputContext("FUN.csv", ",")).print();
AbstractAlgorithmRunner.printFinalSolutionSet(solutionSet);
}
}
/*
* 有4个任务需要3个工人完成, 需要找出最节省时间的任务分配方式.
* 目标函数一个, 即所有任务总计耗时
* 每个任务由哪个worker完成, 即决策变量, 所以共有4个变量, 变量的取值为 workerId, 范围从0~3
*
* 任务和工人的时间Cost矩阵如下:
*
* 任务 工人A 工人B 工人C
* 任务A 2 3 1
* 任务B 4 2 3
* 任务C 3 4 2
* 任务D 1 2 4
*/
class TaskAssignmentProblem extends AbstractIntegerProblem {
private int evaluationCount;
private static final int NUMBER_OF_TASK = 4;
private static final int[][] COMPLETION_TIMES = {
{ 2, 3, 1 },
{ 4, 2, 3 },
{ 3, 4, 2 },
{ 1, 2, 4 },
};
public TaskAssignmentProblem() {
numberOfObjectives(1);
name("TaskAssignmentProblem");
// 4 varabiles for 4 tasks
var lowerList = new ArrayList<Integer>();
lowerList.add(0); // workerId lower value
lowerList.add(0); // workerId lower value
lowerList.add(0); // workerId lower value
lowerList.add(0); // workerId lower value
var upperList = new ArrayList<Integer>();
upperList.add(2); // workerId upper value
upperList.add(2); // workerId upper value
upperList.add(2); // workerId upper value
upperList.add(2); // workerId upper value
variableBounds(lowerList, upperList);
}
@Override
public IntegerSolution evaluate(IntegerSolution solution) {
int totalTime = 0;
for (int i = 0; i < NUMBER_OF_TASK; i++) {
var workerId = solution.variables().get(i);
totalTime += COMPLETION_TIMES[i][workerId];
}
solution.objectives()[0] = totalTime;
return solution;
}
}
/*
* 有4个任务需要3个工人完成, 需要找出最节省时间的任务分配方式, 同时要求每个人的工作量尽量平衡
* 目标函数2个, (1)所有任务总计耗时最小, (2)每个人总耗时最小, 即最忙的那个人耗时最小
* 每个任务由哪个worker完成, 即决策变量, 所以共有4个变量, 变量的取值为 workerId, 范围从0~3
*
* 任务和工人的时间Cost矩阵如下:
*
* 任务 工人A 工人B 工人C
* 任务A 3 2 4
* 任务B 5 4 3
* 任务C 2 3 2
* 任务D 1 4 2
*/
class BalancedTaskAssignmentProblem extends AbstractIntegerProblem {
private int evaluationCount;
private static final int NUMBER_OF_TASK = 4;
private static final int NUMBER_OF_WORKER = 3;
private static final int[][] COMPLETION_TIMES = {
{ 3, 2, 4 },
{ 5, 4, 3 },
{ 2, 3, 2 },
{ 1, 4, 2 },
};
public BalancedTaskAssignmentProblem() {
numberOfObjectives(2);
name("TaskAssignmentProblem");
// 4 varabiles for 4 tasks
var lowerList = new ArrayList<Integer>();
lowerList.add(0); // workerId lower value
lowerList.add(0); // workerId lower value
lowerList.add(0); // workerId lower value
lowerList.add(0); // workerId lower value
var upperList = new ArrayList<Integer>();
upperList.add(2); // workerId upper value
upperList.add(2); // workerId upper value
upperList.add(2); // workerId upper value
upperList.add(2); // workerId upper value
variableBounds(lowerList, upperList);
}
@Override
public IntegerSolution evaluate(IntegerSolution solution) {
int totalTime = 0;
int[] workerTime= new int[NUMBER_OF_WORKER] ;
//目标函数: 总耗时最小
for (int i = 0; i < NUMBER_OF_TASK; i++) {
var workerId = solution.variables().get(i);
totalTime += COMPLETION_TIMES[i][workerId];
workerTime[workerId]+=COMPLETION_TIMES[i][workerId];
}
solution.objectives()[0] = totalTime;
//目标函数:每个人总耗时最小
int maxTime=0 ;
for (int time : workerTime) {
if (maxTime<time){
maxTime=time;
}
}
solution.objectives()[1]=maxTime;
return solution;
}
}
标签:int,JMetal,new,value,add,workerId,import,优化,分配
From: https://www.cnblogs.com/harrychinese/p/18666883