前言
本文继续整理CPU调度WALT相关内容,主要整理如下内容:
- WALT是什么?
- WALT 计算?
- WALT 计算数据如何使用?
1. WALT是什么?
WALT:Windows-Assist Load Tracing的缩写:
- 从字面意思来看,是以window作为辅助项来跟踪CPU LOAD;
- 实质上是一种计算方法,用数据来表现CPU当前的loading情况,用于后续任务调度、迁移、负载均衡等功能;
1.1 为什么需要WALT ?
对于一项技术的发展,尤其是一种计算方式的引入,一定是伴随着过去的技术不在适用于当前事务发展的需要,或者这项技术可以让人更懒;
1.1.1 PELT的计算方式的不足?
PELT的引进的时候,linux的主流还在于服务器使用,更多关注设备性能的体现,彼时功耗还不是考虑的重点,而随着移动设备的发展,功耗和响应速度成为被人们直接感知到的因素,成为当前技术发展主要考虑的因素:
- 对于当前的移动设备,在界面处理的应用场景,需要尽快响应,否则user会明显感觉到卡顿;
- 对于当前移动设备,功耗更是一个必须面对的因素,手机需要频繁充电,那销量一定好不了;
- 根据用户场景决定task是否heavy的要求,比如显示的内容不同,其task重要程度也不同,即同一个类别的TASK也需要根据具体情况动态改变;
而基于当前PELT的调度情况(衰减的计算思路),更能体现连续的趋势情况,而对于快速的突变性质的情况,不是很友好:
- 对于快速上升和快速下降的情况响应速度较慢,由于衰减的计算过程,所以实际的Loading上升和下降需要一定周期后才能在数据上反馈出来,导致响应速度慢;
- PELT基于其衰减机制,所以对于一个task sleep 一段时间后,则其负载计算减小,但是如果此时该Task为网络传输这种,周期性的需要cpu和freq的能力,则不能快速响应(因为该计算方式更能体现趋向性、平均效果)
1.2 WALT如何处理
根据上述的原因,我们了解到,当前需要在PELT的基础上(保持其好处),实现一种更能适用于当前需求的计算方式:
- 数据上报更加及时;
- 数据直接体现现状;
- 对算力的消耗不会增加(算力);
1.2.1 WALT 处理
我这里总结了WALT所能(需要)做到的效果:
- 继续保持对于所有Task-entity的跟踪 ;
- 在此前usage(load)的基础上,添加对于demand的记录,用于之后预测;
- 每个CPU上runqueue 的整体负载仍为所有Task统计的sum;
- 核心在于计算差异,由之前的衰减的方式变更为划分window的方式:数据采集更能快速体现实际变化(对比与PELT的趋势),如下为Linux官方的一些资料:
- A task’s demand is the maximum of its contribution to the most recently completed window and its average demand over the past N windows.
- WALT “forgets” blocked time entirely:即只统计runable和running time,可以对于Task的实际耗时有更准确的统计,可以通过demand预测;
- CPU busy time - The sum of execution times of all tasks in the most recently completed window;
- WALT “forgets” cpu utilization as soon as tasks are taken off of the runqueue;
1.2.2 应用补充
- task分配前各个CPU和task负载的统计;
- task migration 迁移
- 大小核的分配;
- EAS 分配;
1.3 版本导入
- linux 4.8.2 之后导入(但是在bootlin查看code,最新5.8仍没有对应文件)
- android 4.4之后导入(android kernel 4.9 中是有这部分的)
2. Kernel如何启用WALT
android kernel code中已经集成了这部分内容,不过根据厂商的差异,可能存在没有启用的情况:
-
打开宏测试:
- menuconfig ==》Genernal setup ==》CPU/Task time and stats accounting ==》support window based load tracking
- 图示:
-
直接修改
- kernel/arch/arm64/config/defconfig中添加CONFIG_SCHED_WALT=y
-
build image 验证修改是否生效:
demo:/sys/kernel/tracing # zcat /proc/config.gz | grep WALT
CONFIG_SCHED_WALT=y
CONFIG_HID_WALTOP=y
- 测试
当前只是在ftrace中可以看到确实有统计walt的数据,但是没有实际的应用来确认具体是否有改善或者其他数据(当然Linux的资料中有一些数据,但是并非本地测试);
3. WALT计算
本小节从原理和code 来说明,WALT采用的计算方式:
- windows 是如何划分的?
- 对于Task如何分类,分别做怎样的处理?
- WALT部分数据如何更新?
- WALT更新的数据如何被调度、EAS使用?
3.1 Windows划分
首先来看辅助计算项window是如何划分的?
简单理解,就是将系统自启动开始以一定时间作为一个周期,分别统计不同周期内Task的Loading情况,并将其更新到Runqueue中;
则还有哪些内容需要考虑?
- 一个周期即window设置为多久比较合适?这个根据实际项目不同调试不同的值,目前Kernel中是设置的标准是20ms;
- 具体统计多少个window内的Loading情况?根据实际项目需要调整,目前Kernel中设置为5个window;
所以对于一个Task和window,可能存在如下几种情况:
ps:ms = mark_start(Task开始),ws = window_start(当前window开始), wc = wallclock(当前系统时间)
- Task在这个window内启动,且做统计时仍在这个window内,即Task在一个window内;
- Task在前一个window内启动,做统计时在当前window内,即Task跨过两个window;
- Task在前边某一个window内启动,做统计时在当前window内,即Task跨过多个完整window;
即Task在Window的划分只有上述三种情况,所有的计算都是基于上述划分的;
3.2 Task 分类
可以想到的是,对于不同类别的Task或者不同状态的Task计算公式都是不同的,WALT将Task划分为如下几个类别:
上图中有将各个Task event的调用函数列出来;
3.2.1 更新demand判断
在更新demand时,会首先根据Task event判断此时是否需要更新:
对应function:
static int account_busy_for_task_demand(struct task_struct *p, int event)
{
/* No need to bother updating task demand for exiting tasks
* or the idle task. */
//task 已退出或者为IDLE,则不需要计算
if (exiting_task(p) || is_idle_task(p))
return 0;
/* When a task is waking up it is completing a segment of non-busy
* time. Likewise, if wait time is not treated as busy time, then
* when a task begins to run or is migrated, it is not running and
* is completing a segment of non-busy time. */
// 默认 walt_account_wait_time是1,则只有TASK_WAKE
if (event == TASK_WAKE || (!walt_account_wait_time &&
(event == PICK_NEXT_TASK || event == TASK_MIGRATE)))
return 0;
return 1;
}
3.2.2 更新CPU busy time判断
在更新CPU busy time时,会首先根据Task event判断此时是否需要更新:
对应function:
static int account_busy_for_cpu_time(struct rq *rq, struct task_struct *p,
u64 irqtime, int event)
{
//是否为idle task or other task?
if (is_idle_task(p)) {
/* TASK_WAKE && TASK_MIGRATE is not possible on idle task! */
// 是schedule 触发的下一个task为idle task
if (event == PICK_NEXT_TASK)
return 0;
/* PUT_PREV_TASK, TASK_UPDATE && IRQ_UPDATE are left */
// 如果是中断或者等待IO的IDLE TASK,是要计算busy time的;
return irqtime || cpu_is_waiting_on_io(rq);
}
//wake 唤醒操作不需要计算;
if (event == TASK_WAKE)
return 0;
//不是IDLE TASK则以下几个类型需要计算
if (event == PUT_PREV_TASK || event == IRQ_UPDATE ||
event == TASK_UPDATE)
return 1;
/* Only TASK_MIGRATE && PICK_NEXT_TASK left */
//默认是0
return walt_freq_account_wait_time;
}
3.3 数据如何更新?(调用逻辑)
前边两个小结已经介绍了Task在window上统计逻辑和不同Task统计不同数据判断,这里具体来看核心调用逻辑,首先上一张图:
这个图是在xmind导出来的结构图,不清楚是否可以放大查看,这里具体介绍流程:
- 入口函数walt_update_task_ravg
- demand更新函数
- cpu busy time 更新函数
3.3.1 入口函数介绍
对应function:
/* Reflect task activity on its demand and cpu's busy time statistics */
void walt_update_task_ravg(struct task_struct *p, struct rq *rq,
int event, u64 wallclock, u64 irqtime)
{
//判断返回
if (walt_disabled || !rq->window_start)
return;
lockdep_assert_held(&rq->lock);
//更新window_start和cum_window_demand
update_window_start(rq, wallclock);
if (!p->ravg.mark_start)
goto done;
//更新数据:demand和busy_time
update_task_demand(p, rq, event, wallclock);
update_cpu_busy_time(p, rq, event, wallclock, irqtime);
done:
// trace
trace_walt_update_task_ravg(p, rq, event, wallclock, irqtime);
// 更新mark_start
p->ravg.mark_start = wallclock;
}
函数主要做三件事情:
- 更新当前 window start时间为之后数据更新做准备;
- 更新对应task的demand数值,需要注意这里也会对应更新RQ中的数据;
- 更新对应task的cpu busy time占用;
这个函数是WALT计算的主要入口,可以看到调用它的位置有很多,即上图最左侧内容,简单来说就是在中断、唤醒、迁移、调度这些case下都会更新Loading情况,这里不一一详细说明了;
- task awakend
- task start execute
- task stop execute
- task exit
- window rollover
- interrupt
- scheduler_tick
- task migration
- freq change
3.3.2 更新window start
这里主要是在计算之前更新window_start确保rq 窗口起始值准确:
对应function:
static void
update_window_start(struct rq *rq, u64 wallclock)
{
s64 delta;
int nr_windows;
//计算时间
delta = wallclock - rq->window_start;
/* If the MPM global timer is cleared, set delta as 0 to avoid kernel BUG happening */
if (delta < 0) {
delta = 0;
/*
* WARN_ONCE(1,
* "WALT wallclock appears to have gone backwards or reset\n");
*/
}
if (delta < walt_ravg_window) // 不足一个window周期,则直接返回;
return;
nr_windows = div64_u64(delta, walt_ravg_window);//计算window数量
rq->window_start += (u64)nr_windows * (u64)walt_ravg_window;//统计window_start时间
rq->cum_window_demand = rq->cumulative_runnable_avg;//实质还得使用cumulative_runnable_avg
}
3.3.3 更新demand
3.3.3.1 demand主要逻辑:
对应function:
/*
* Account cpu demand of task and/or update task's cpu demand history
*
* ms = p->ravg.mark_start;
* wc = wallclock
* ws = rq->window_start
*
* Three possibilities:
*
* a) Task event is contained within one window.
* window_start < mark_start < wallclock
*
* ws ms wc
* | | |
* V V V
* |---------------|
*
* In this case, p->ravg.sum is updated *iff* event is appropriate
* (ex: event == PUT_PREV_TASK)
*
* b) Task event spans two windows.
* mark_start < window_start < wallclock
*
* ms ws wc
* | | |
* V V V
* -----|-------------------
*
* In this case, p->ravg.sum is updated with (ws - ms) *iff* event
* is appropriate, then a new window sample is recorded followed
* by p->ravg.sum being set to (wc - ws) *iff* event is appropriate.
*
* c) Task event spans more than two windows.
*
* ms ws_tmp ws wc
* | | | |
* V V V V
* ---|-------|-------|-------|-------|------
* | |
* |<------ nr_full_windows ------>|
*
* In this case, p->ravg.sum is updated with (ws_tmp - ms) first *iff*
* event is appropriate, window sample of p->ravg.sum is recorded,
* 'nr_full_window' samples of window_size is also recorded *iff*
* event is appropriate and finally p->ravg.sum is set to (wc - ws)
* *iff* event is appropriate.
*
* IMPORTANT : Leave p->ravg.mark_start unchanged, as update_cpu_busy_time()
* depends on it!
*/
static void update_task_demand(struct task_struct *p, struct rq *rq,
int event, u64 wallclock)
{
u64 mark_start = p->ravg.mark_start;//mark start 可以看到是task 的值;
u64 delta, window_start = rq->window_start;//window start是 rq的值;
int new_window, nr_full_windows;
u32 window_size = walt_ravg_window;
//第一个判断条件,ms和ws,即当前task的start实际是否在这个window内;
new_window = mark_start < window_start;
if (!account_busy_for_task_demand(p, event)) {
if (new_window)
/* If the time accounted isn't being accounted as
* busy time, and a new window started, only the
* previous window need be closed out with the
* pre-existing demand. Multiple windows may have
* elapsed, but since empty windows are dropped,
* it is not necessary to account those. */
update_history(rq, p, p->ravg.sum, 1, event);
return;
}
// 如果ms > ws,则是case a:将wc-ms,在此周期内的实际执行时间;
if (!new_window) {
/* The simple case - busy time contained within the existing
* window. */
add_to_task_demand(rq, p, wallclock - mark_start);
return;
}
//超过 1个window的情况
/* Busy time spans at least two windows. Temporarily rewind
* window_start to first window boundary after mark_start. */
//从ms 到 ws的时间,包含多个完整window
delta = window_start - mark_start;
nr_full_windows = div64_u64(delta, window_size);
window_start -= (u64)nr_full_windows * (u64)window_size;
//ws 计算到ws_tmp这里:
/* Process (window_start - mark_start) first */
//先添加最开始半个周期的demand
add_to_task_demand(rq, p, window_start - mark_start);
/* Push new sample(s) into task's demand history */
//更新history
update_history(rq, p, p->ravg.sum, 1, event);
if (nr_full_windows)
update_history(rq, p, scale_exec_time(window_size, rq),
nr_full_windows, event);
/* Roll window_start back to current to process any remainder
* in current window. */
// 还原 window_start
window_start += (u64)nr_full_windows * (u64)window_size;
/* Process (wallclock - window_start) next */
//更新最后的周期,可以看到整体类似于pelt的计算,增加了history的操作;
mark_start = window_start;
add_to_task_demand(rq, p, wallclock - mark_start);
}
//demand计算更新:
static void add_to_task_demand(struct rq *rq, struct task_struct *p,
u64 delta)
{
//demand需要做一次转换,将实际运行时间,转换为CPU 能力比例,一般就是获取CPU 的capcurr 然后除1024;
delta = scale_exec_time(delta, rq);
p->ravg.sum += delta;
//这里有个判断当sum超过window size的时候修改;
if (unlikely(p->ravg.sum > walt_ravg_window))
p->ravg.sum = walt_ravg_window;
}
3.3.3.2 update history 逻辑:
update_history 整理:
- 本函数在Task进入一个新的Window的时候调用;
- 更新Task中的demand,根据过往几个Window的情况;
- 同步更新Rq中的Usage,根据当前demand计算值;
对应function:
/*
* Called when new window is starting for a task, to record cpu usage over
* recently concluded window(s). Normally 'samples' should be 1. It can be > 1
* when, say, a real-time task runs without preemption for several windows at a
* stretch.
*/
static void update_history(struct rq *rq, struct task_struct *p,
u32 runtime, int samples, int event)
{
u32 *hist = &p->ravg.sum_history[0];//对应window 指针链接
int ridx, widx;
u32 max = 0, avg, demand;
u64 sum = 0;
/* Ignore windows where task had no activity */
if (!runtime || is_idle_task(p) || exiting_task(p) || !samples)
goto done;
/* Push new 'runtime' value onto stack */
widx = walt_ravg_hist_size - 1;// history数量最大位置
ridx = widx - samples;//计算链表中需要去除的window数量
//如下两个for循环就是将新增加的window添加到history链表中,并更新sum值和max值;
for (; ridx >= 0; --widx, --ridx) {
hist[widx] = hist[ridx];
sum += hist[widx];
if (hist[widx] > max)
max = hist[widx];
}
for (widx = 0; widx < samples && widx < walt_ravg_hist_size; widx++) {
hist[widx] = runtime;
sum += hist[widx];
if (hist[widx] > max)
max = hist[widx];
}
// Task中sum赋值;
p->ravg.sum = 0;
//demand根据策略不同,从history window中计算,我们默认是policy2 就是 WINDOW_STATS_MAX_RECENT_AVG,在过去平均值和当前值中选择大的那个;
if (walt_window_stats_policy == WINDOW_STATS_RECENT) {
demand = runtime;
} else if (walt_window_stats_policy == WINDOW_STATS_MAX) {
demand = max;
} else {
avg = div64_u64(sum, walt_ravg_hist_size);
if (walt_window_stats_policy == WINDOW_STATS_AVG)
demand = avg;
else
demand = max(avg, runtime);
}
/*
* A throttled deadline sched class task gets dequeued without
* changing p->on_rq. Since the dequeue decrements hmp stats
* avoid decrementing it here again.
*
* When window is rolled over, the cumulative window demand
* is reset to the cumulative runnable average (contribution from
* the tasks on the runqueue). If the current task is dequeued
* already, it's demand is not included in the cumulative runnable
* average. So add the task demand separately to cumulative window
* demand.
*/
//进行runnable_avg参数矫正,前提为并非deadline类型task
if (!task_has_dl_policy(p) || !p->dl.dl_throttled) {
if (task_on_rq_queued(p))//在runqueue中排队,但是没有实际执行
fixup_cumulative_runnable_avg(rq, p, demand);//在rq中添加当前demand和task中记录demand的差值,更新到cumulative_runnable_avg
else if (rq->curr == p)//当前执行的就是这个Task
fixup_cum_window_demand(rq, demand);//在rq中添加demand
}
//最后将计算出来的demand更新到Task中;
p->ravg.demand = demand;
done:
trace_walt_update_history(rq, p, runtime, samples, event);
return;
}
//更新cumulative_runnable_avg的值;
static void
fixup_cumulative_runnable_avg(struct rq *rq,
struct task_struct *p, u64 new_task_load)
{
//计算demand和p中记录的demand差值(可能小于0)
s64 task_load_delta = (s64)new_task_load - task_load(p);
//添加到rq中
rq->cumulative_runnable_avg += task_load_delta;
if ((s64)rq->cumulative_runnable_avg < 0)
panic("cra less than zero: tld: %lld, task_load(p) = %u\n",
task_load_delta, task_load(p));
//
fixup_cum_window_demand(rq, task_load_delta);
}
//更新cum_window_demand,直接累加传入值
static inline void fixup_cum_window_demand(struct rq *rq, s64 delta)
{
rq->cum_window_demand += delta;
if (unlikely((s64)rq->cum_window_demand < 0))
rq->cum_window_demand = 0;
}
//可以看到这里实际更新了:cum_window_demand、cumulative_runnable_avg
//这两个还在如下函数中有更新:就一个+,一个-,
void
walt_inc_cumulative_runnable_avg(struct rq *rq,
struct task_struct *p)
{
rq->cumulative_runnable_avg += p->ravg.demand;
/*
* Add a task's contribution to the cumulative window demand when
*
* (1) task is enqueued with on_rq = 1 i.e migration,
* prio/cgroup/class change.
* (2) task is waking for the first time in this window.
*/
if (p->on_rq || (p->last_sleep_ts < rq->window_start))
fixup_cum_window_demand(rq, p->ravg.demand);
}
void
walt_dec_cumulative_runnable_avg(struct rq *rq,
struct task_struct *p)
{
rq->cumulative_runnable_avg -= p->ravg.demand;
BUG_ON((s64)rq->cumulative_runnable_avg < 0);
/*
* on_rq will be 1 for sleeping tasks. So check if the task
* is migrating or dequeuing in RUNNING state to change the
* prio/cgroup/class.
*/
if (task_on_rq_migrating(p) || p->state == TASK_RUNNING)
fixup_cum_window_demand(rq, -(s64)p->ravg.demand);
}
//在code中搜索了这两个函数的调用:
//分别在fair\dl\rt\stop_task中调用enqueue时inc,dequeue时dec;
//这部分计算会优先于rq中nr_running进行;
函数的一些注解都在code中添加了,有任何疑问欢迎提出;
3.3.3.3 demand更新函数总结:
则demand更新主要做了如下内容:
- 计算包括task中间包括多个1个window以及多个window的情况,实质就是根据我们上文提到的窗口划分来做的;
- 需要注意的是本函数中window_start和mark_start都是局部变量,实际task内值并未更新,因为之后计算busy time还需要使用;
- demand 实质更新的就是task中ravg.sum以及rq中cumulative_runnable_avg 和cum_window_demand ;
3.3.4 更新cpu busy time
这个函数逻辑画出来更加庞大,主要是针对于不同的case做计算,计算划分都是前文提过的窗口划分,但是具体数值统计会有些许差异:
对应function:
/*
* Account cpu activity in its busy time counters (rq->curr/prev_runnable_sum)
*/
static void update_cpu_busy_time(struct task_struct *p, struct rq *rq,
int event, u64 wallclock, u64 irqtime)
{
int new_window, nr_full_windows = 0;
int p_is_curr_task = (p == rq->curr);
u64 mark_start = p->ravg.mark_start; //ms
u64 window_start = rq->window_start; //ws
u32 window_size = walt_ravg_window; //window size
u64 delta;
//初始变量值获取
new_window = mark_start < window_start;// is task period in a new window?
if (new_window) {
// update nr_full_windows
nr_full_windows = div64_u64((window_start - mark_start),
window_size);
if (p->ravg.active_windows < USHRT_MAX)
p->ravg.active_windows++;
}
/* Handle per-task window rollover. We don't care about the idle
* task or exiting tasks. */
if (new_window && !is_idle_task(p) && !exiting_task(p)) {
u32 curr_window = 0;
if (!nr_full_windows)
curr_window = p->ravg.curr_window;
//update prev
p->ravg.prev_window = curr_window;
p->ravg.curr_window = 0;
}
// 根据event irq判断当前的输入,如果没有对busy造成贡献,则直接返回;
if (!account_busy_for_cpu_time(rq, p, irqtime, event)) {
/* account_busy_for_cpu_time() = 0, so no update to the
* task's current window needs to be made. This could be
* for example
*
* - a wakeup event on a task within the current
* window (!new_window below, no action required),
* - switching to a new task from idle (PICK_NEXT_TASK)
* in a new window where irqtime is 0 and we aren't
* waiting on IO */
if (!new_window)
return;
/* A new window has started. The RQ demand must be rolled
* over if p is the current task. */
if (p_is_curr_task) {
u64 prev_sum = 0;
/* p is either idle task or an exiting task */
if (!nr_full_windows) {
prev_sum = rq->curr_runnable_sum;
}
rq->prev_runnable_sum = prev_sum;
rq->curr_runnable_sum = 0;
}
return;
}
//对应task在当前window内启动,对类型做判断(这个是核心),然后计算时间更新
if (!new_window) {
/* account_busy_for_cpu_time() = 1 so busy time needs
* to be accounted to the current window. No rollover
* since we didn't start a new window. An example of this is
* when a task starts execution and then sleeps within the
* same window. */
//判断:不是中断 或者 不是idle 或者 等待IO
if (!irqtime || !is_idle_task(p) || cpu_is_waiting_on_io(rq))
delta = wallclock - mark_start;
else
delta = irqtime;
//换算时间增加curr上
delta = scale_exec_time(delta, rq);
rq->curr_runnable_sum += delta;
if (!is_idle_task(p) && !exiting_task(p))
p->ravg.curr_window += delta;
return;
}
// cur window 内task有做事情,但是传入参数并非该task,一般来说就是中断;
if (!p_is_curr_task) {
/* account_busy_for_cpu_time() = 1 so busy time needs
* to be accounted to the current window. A new window
* has also started, but p is not the current task, so the
* window is not rolled over - just split up and account
* as necessary into curr and prev. The window is only
* rolled over when a new window is processed for the current
* task.
*
* Irqtime can't be accounted by a task that isn't the
* currently running task. */
//整体分割为两步计算,prev & curr
if (!nr_full_windows) {
/* A full window hasn't elapsed, account partial
* contribution to previous completed window. */
delta = scale_exec_time(window_start - mark_start, rq);
if (!exiting_task(p))
p->ravg.prev_window += delta;
} else {
/* Since at least one full window has elapsed,
* the contribution to the previous window is the
* full window (window_size). */
delta = scale_exec_time(window_size, rq);
if (!exiting_task(p))
p->ravg.prev_window = delta;
}
rq->prev_runnable_sum += delta;
/* Account piece of busy time in the current window. */
delta = scale_exec_time(wallclock - window_start, rq);
rq->curr_runnable_sum += delta;
if (!exiting_task(p))
p->ravg.curr_window = delta;
return;
}
//运行的函数
if (!irqtime || !is_idle_task(p) || cpu_is_waiting_on_io(rq)) {
/* account_busy_for_cpu_time() = 1 so busy time needs
* to be accounted to the current window. A new window
* has started and p is the current task so rollover is
* needed. If any of these three above conditions are true
* then this busy time can't be accounted as irqtime.
*
* Busy time for the idle task or exiting tasks need not
* be accounted.
*
* An example of this would be a task that starts execution
* and then sleeps once a new window has begun. */
if (!nr_full_windows) {
/* A full window hasn't elapsed, account partial
* contribution to previous completed window. */
delta = scale_exec_time(window_start - mark_start, rq);
if (!is_idle_task(p) && !exiting_task(p))
p->ravg.prev_window += delta;
delta += rq->curr_runnable_sum;
} else {
/* Since at least one full window has elapsed,
* the contribution to the previous window is the
* full window (window_size). */
delta = scale_exec_time(window_size, rq);
if (!is_idle_task(p) && !exiting_task(p))
p->ravg.prev_window = delta;
}
/*
* Rollover for normal runnable sum is done here by overwriting
* the values in prev_runnable_sum and curr_runnable_sum.
* Rollover for new task runnable sum has completed by previous
* if-else statement.
*/
rq->prev_runnable_sum = delta;
/* Account piece of busy time in the current window. */
delta = scale_exec_time(wallclock - window_start, rq);
rq->curr_runnable_sum = delta;
if (!is_idle_task(p) && !exiting_task(p))
p->ravg.curr_window = delta;
return;
}
//中断
if (irqtime) {
/* account_busy_for_cpu_time() = 1 so busy time needs
* to be accounted to the current window. A new window
* has started and p is the current task so rollover is
* needed. The current task must be the idle task because
* irqtime is not accounted for any other task.
*
* Irqtime will be accounted each time we process IRQ activity
* after a period of idleness, so we know the IRQ busy time
* started at wallclock - irqtime. */
BUG_ON(!is_idle_task(p));
mark_start = wallclock - irqtime;
/* Roll window over. If IRQ busy time was just in the current
* window then that is all that need be accounted. */
rq->prev_runnable_sum = rq->curr_runnable_sum;
if (mark_start > window_start) {
rq->curr_runnable_sum = scale_exec_time(irqtime, rq);
return;
}
/* The IRQ busy time spanned multiple windows. Process the
* busy time preceding the current window start first. */
delta = window_start - mark_start;
if (delta > window_size)
delta = window_size;
delta = scale_exec_time(delta, rq);
rq->prev_runnable_sum += delta;
/* Process the remaining IRQ busy time in the current window. */
delta = wallclock - window_start;
rq->curr_runnable_sum = scale_exec_time(delta, rq);
return;
}
BUG();
}
细节内容在函数中注释了,这里来简单总结下:
- 根据不同Task类型做不同busytime时间的计算;
- 核心计算方式均相同,只是具体数值差异;
- 更新数据为
Task中prev_window、curr_window
rq中prev_runable_sum、curr_runnable_sum
3.3.5 irq load 相关调用统计
3.3.5.1 与irq相关的三个变量:
cur_irqload:当前Task的irqload,即执行时间
avg_irqload:当前rq的平均irqload,这个值与中断频率相关,逐步衰减,是个累加值;
u64 irqload_ts:上次计算walt irqload的时间,通过这个值来确认中断频次;
3.3.5.2 调用逻辑
sched_init时 三个值被设置为0,前边已经研究过了,这东西是在中断时被调用,具体来看:
void walt_account_irqtime(int cpu, struct task_struct *curr,
u64 delta, u64 wallclock)
{
struct rq *rq = cpu_rq(cpu);
unsigned long flags, nr_windows;
u64 cur_jiffies_ts;
raw_spin_lock_irqsave(&rq->lock, flags);
/*
* cputime (wallclock) uses sched_clock so use the same here for
* consistency.
*/
//计算从获取wallclock到执行到这里的差值更新,即做矫正;
//这里需要跟踪delta传入时值,sched_clock_cpu - irq_start_time
//即delta是irq的执行时间;
delta += sched_clock() - wallclock;
cur_jiffies_ts = get_jiffies_64();
//如果是IDLE task则做walt相关计算更新,这里是获取的当前值作为wallclock,delta即irq执行time
if (is_idle_task(curr))
walt_update_task_ravg(curr, rq, IRQ_UPDATE, walt_ktime_clock(),
delta);
//计算两次中断统计之间的时间,这里nr_windows是tick数
nr_windows = cur_jiffies_ts - rq->irqload_ts;
//这里是指这个CPU上触发中断的频率,以10个tick作为判断依据,假设HZ设置为250,则一个tick为4ms
if (nr_windows) {
if (nr_windows < 10) {//如果经过的时间差值在10以内,则avg_irqload衰减为原来的3/4
/* Decay CPU's irqload by 3/4 for each window. */
rq->avg_irqload *= (3 * nr_windows);
rq->avg_irqload = div64_u64(rq->avg_irqload,
4 * nr_windows);
} else {//如果经过的时间差值超过10,则avg_irqload忽略不计,直接记为0;
rq->avg_irqload = 0;
}
//累加当前的irqload
rq->avg_irqload += rq->cur_irqload;
rq->cur_irqload = 0;
}
rq->cur_irqload += delta;
//irqload_ts为当前值,目前搜索irqload_ts只有这两个位置有更新使用,则说明ts是指上次irq中断统计的时间
rq->irqload_ts = cur_jiffies_ts;
raw_spin_unlock_irqrestore(&rq->lock, flags);
}
account_irq_enter_time/account_irq_exit_time ==> irq_account_irq ==> walt_account_irqtime
这个过程还比较简单:
- 中断进入和退出的时候都会统计数据;
- 统计数据即中断执行时间;
- rq的时间根据中断进入的频率累加不同;
3.3.5.3 irqload使用的第一个场景
判断cpu的irq load情况,直接上code:
#define WALT_HIGH_IRQ_TIMEOUT 3
u64 walt_irqload(int cpu) {
struct rq *rq = cpu_rq(cpu);
s64 delta;
delta = get_jiffies_64() - rq->irqload_ts;
/*
* Current context can be preempted by irq and rq->irqload_ts can be
* updated by irq context so that delta can be negative.
* But this is okay and we can safely return as this means there
* was recent irq occurrence.
*/
//这个计算是避免被竞争抢占后delta值发生变化,至于这里为什么是3,目前还有疑惑?
if (delta < WALT_HIGH_IRQ_TIMEOUT)
return rq->avg_irqload;
else
return 0;
}
//这个函数是在find_best_target,即在migirate时找到下一个CPU时判断负载;
int walt_cpu_high_irqload(int cpu) {
return walt_irqload(cpu) >= sysctl_sched_walt_cpu_high_irqload;//这个值默认是10ms
}
3.4 关键结构体
- rq //在runqueue中添加部分数据统计
- task_struct //在task_struct中添加对应变量
- ravg //与这个计算相关的结构
3.4.1 rq
对应的结构定义:
struct rq {
...
#ifdef CONFIG_SCHED_WALT
u64 cumulative_runnable_avg;
u64 window_start;
u64 curr_runnable_sum;
u64 prev_runnable_sum;
u64 nt_curr_runnable_sum;
u64 nt_prev_runnable_sum;
u64 cur_irqload;
u64 avg_irqload;
u64 irqload_ts;
u64 cum_window_demand;
#endif /* CONFIG_SCHED_WALT */
...
};
3.4.2 task_struct
struct task_struct {
...
#ifdef CONFIG_SCHED_WALT
struct ravg ravg;
/*
* 'init_load_pct' represents the initial task load assigned to children
* of this task
*/
u32 init_load_pct;
u64 last_sleep_ts;
#endif
...
}
/* ravg represents frequency scaled cpu-demand of tasks */
struct ravg {
/*
* 'mark_start' marks the beginning of an event (task waking up, task
* starting to execute, task being preempted) within a window
*
* 'sum' represents how runnable a task has been within current
* window. It incorporates both running time and wait time and is
* frequency scaled.
*
* 'sum_history' keeps track of history of 'sum' seen over previous
* RAVG_HIST_SIZE windows. Windows where task was entirely sleeping are
* ignored.
*
* 'demand' represents maximum sum seen over previous
* sysctl_sched_ravg_hist_size windows. 'demand' could drive frequency
* demand for tasks.
*
* 'curr_window' represents task's contribution to cpu busy time
* statistics (rq->curr_runnable_sum) in current window
*
* 'prev_window' represents task's contribution to cpu busy time
* statistics (rq->prev_runnable_sum) in previous window
*/
u64 mark_start; // marks the beginning of an event (task waking up, task starting to execute, task being preempted) within a window
u32 sum, demand; // sum : how runable a task has benn within current window; demand:
u32 sum_history[RAVG_HIST_SIZE_MAX]; //
u32 curr_window, prev_window;
u16 active_windows;
};
#endif
标签:负载,task,rq,time,WALT,start,window,demand,CPU
From: https://www.cnblogs.com/linhaostudy/p/18653486