首页 > 其他分享 >SOCS0100 Computational Tools

SOCS0100 Computational Tools

时间:2024-12-28 19:52:47浏览次数:1  
标签:use code data SOCS0100 Computational assessment ChatGPT Tools your

SOCS0100 Computational Tools for Reproducible Social Science

Second Summative Assignment

Guidelines for Completing and Submitting SOCS0100 Assignment:

• This assessment is due on 13 January 2025, 1pm and shall be submitted on Moodle.

• Late submission results in penalties. There is no exception to late submission penalties, unless an extenuating circumstances application has been successfully made. Please see the details here.

• You are expected to submit a compressed (zipped) folder: in the folder, you should include the coversheet, the main body of your report (html) (i.e., answers to the questions), any tables, figures, dataset, and integrated chunks of code you may use in your report, your main code files

(e.g., R scripts, app.R, Quarto docs), and README.md file.

• Word limit of this assignment is  1500. This word count excludes tables, chunks of code, figures, and table and figure legends, references, but includes any footnote or endnote you may use. Exceeding this limit will result in penalties.

• This is an assessed piece of coursework for the SOCS0100 module; collaboration and/or discussion with anyone is strictly prohibited. The rules for plagiarism apply and any cases of suspected plagiarism of published work or the work of classmates will betaken seriously.

• The coursework will be assessed against the代写SOCS0100 Computational Tools criteria set in the UCL UG-ESSAY GRADING SCHEME, a pdf of which could be seen in the assessment submission area of the course on Moodle. In addition to those general guidelines, further specific factors will affect the marks: Correctness of your code, clarity of arguments, rigour in processing, analysing, and presenting the tasks, creativity and novelty in your answers, and the ability to demonstrate that key concepts treated in the module are understood well.

• Please read the below guidelines and AI-usage policy carefully to avoid losing unnecessary    marks.

Assessment PartI

•   The second assessment aims to evaluate your proficiency in applying fundamental computational techniques in automated  data collection and building an interactive dashboard to explore the real-world data you formed.

•   Additionally, you will be required to add an exhaustive overview of the dataset, the significance of the data source in social sciences, and some insights from the interactive dashboard into a structured report while critically engaging with ChatGPT. This assignment is designed to foster both technical skills and critical thinking in using computational tools.

PartI-A Automated Data Collection (30 points)

•   Employ one of the following automated data collection techniques  covered in the module (static web-scraping; dynamic web-scraping; or APIs) in R to comprehensively gather data from a chosen source. In-class exercises can guide you on what sort of web source you can scrape for this part.

•   Methodically document each step of your data collection process, elucidating  the rationale behind every decision.

•   Provide code snippets complemented by explanatory comments, ensuring that your data collection procedures are both transparent and reproducible.

PartI-B Data Exploration and Contextualisation (10 points)

•   Clean and tidy your data for the next steps. Please show your data wrangling process in detail.

•   Provide an exhaustive overview of the dataset you formed, encompassing characteristics such as dimensions, data types, and a comprehensive description of each variable.

•   Clarify the rationale behind your selection of the data source, emphasising its potential significance in social sciences.

Assessment Part II

Part II-A Building an Interactive Dashboard with R Shiny (30 points)

•  Create  an  interactive  dashboard  using  R  Shiny  that  utilises  the  refined  dataset.  Your interactive dashboard should be reproducible through your app.R file. Note that you are not expected to embed the Shiny app into your Quarto document.

• Design and implement a minimum of three interactive visualisations within the R  Shiny dashboard, derived from your dataset.

• Offer clear and concise interpretations of each visualisation, elucidating any emerging trends, patterns, or noteworthy observations in your report (you don’t need to add visualisations into your report).

• Elaborate on the specific visualisations chosen, justifying their selection, and elucidating their contributions to a deeper comprehension of the data source.

Part II-B Reproducibility (10 points)

•   Uphold the principles of reproducibility by  sharing your replication materials in the compressed (zipped) folder, encompassing all pertinent code and a meticulously crafted README.md file. Prioritise the meticulous documentation of your   codebase, rendering it accessible and comprehensible for potential replication.

Part II-C Critical Engagement with AI: ChatGPT (20 points)

You are expected to provide your reflections based on the points below in the report.

• Embrace ChatGPT as a collaborative tool in your computational process, soliciting its code refinement.

• Engage in a critical evaluation of ChatGPT's contributions to your project within a dedicated section of your report

• Analyse the value-added by ChatGPT, highlighting instances where it offered insightful perspectives, refined code, or innovative problem-solving approaches.

• Dilate upon any constraints or challenges that surfaced during interactions with ChatGPT, contributing to a well-rounded assessment.

• Reflect upon how ChatGPT impacted your assessment's trajectory, shaping its outcome and affecting your overall learning experience.

AI-Usage Policy in This Assessment:

In this module/assignment, students are permitted to use only ChatGPT for specific defined processes within the assessment.

This can be utilised to enhance and support the development of specific skills in specific ways, as specified by the module leader and required by the assessment. As per the requirements, for instance, students are asked to use ChatGPT for critically evaluating their code in automated data collection, data processing, and creating interactive dashboards in this assessment. In doing  so,  students  are  expected  to  highlight  instances  where  ChatGPT  offers  insightful solutions, refined code, or worsens student’s solutions and code.

Except critical engagement with ChatGPT through code refinement, this module prohibits all other use of artificial intelligence (AI), including large language models, to author or co-author  formative or  summative work. This prohibition includes the  following practices  and  any practices similar to them:

• Writing parts or all of an assessment;

• Generating outlines, structures and high-level arguments for essays;

• Rewriting or paraphrasing text from other sources for use in written work.

Language and writing review are not prohibited, defined as having a third-party or software check areas of academic writing such as structure, fluency, presentation, grammar, spelling, punctuation,  and  language  translation.  However,  language  review  may  be  considered Academic Misconduct if substantive changes to content have been made by the reviewer or software or at their recommendation, which would suggest that the reviewer or software had either produced or determined the substantive content of the work.

Including content generated by AI tools will not be considered academic misconduct only if it is clearly signposted (by, for example, quotation marks) and attributed (by including a reference to the tool and date of use). However, similarly to quoting Wikipedia, quoting an AI system is unlikely to be a valuable addition to your work and unless clearly relevant to an argument may negatively impact the perceived quality of your work.

Suspected use of AI technologies other than specified one in the assessment may lead students to be subject to an Investigatory Viva.

 

标签:use,code,data,SOCS0100,Computational,assessment,ChatGPT,Tools,your
From: https://www.cnblogs.com/MATH1131/p/18637862

相关文章

  • 记一个itertools排列组合和列表随机排序的例子
    朋友不知道哪里弄来了一长串单词列表,一定要搞个单词不重复的组合。那么这个时候我们就可以想到读书时所学的排列组合知识了,而这个在Python中可以怎么实现呢?我记录如下:使用itertools模块实现排列组合在Python中,排列组合可以通过itertools模块来实现。以下是两个主要函......
  • java geotools 开发或者部署问题
    一、用到geotools打包部署问题问题:geotools包依赖不能用本地离线包,打包报错问题解决方法: 1.先配置在线下载geotools,在pom.xml <properties> <java.version>1.8</java.version> <geotools.version>25.2</geotools.version> </properties> <dependency> <......
  • 备忘--Masuit.Tools友好的C#万能工具库
    https://www.masuit.tools/api.htmlhttps://github.com/ldqk/Masuit.ToolsMasuit.Tools(码数吐司库)全龄段友好的C#万能工具库,码数吐司库,包含一些常用的操作类,大都是静态类,加密解密,反射操作,权重随机筛选算法,分布式短id,表达式树,linq扩展,文件压缩,多线程下载,硬件信息,字符串扩展方......
  • [Tools] Automate Creating a Local React Project, GitHub Repository, and Live Hos
    It'sfairlytrivialtocreateaReactproject,butthere'salwaysabighurdlebetweencreatingitlocallyandmakingitshareablesothatsomeoneelsecanrunit.ThislessonwalksyouthroughtheprocessofautomatingcreatingaReactproject......
  • 程序员实用工具之推荐(Recommendations for Practical Tools for Programmers)
    11款程序员实用工具,老少皆宜优秀程序员之所以优秀的原因并不一定是他写代码的速度比所有人都快,但他解决事情的效率一定是比很多人都要高的,提升工作效率的方法并不需要我们十八般武艺样样精通,有时候使用好的工具就能帮助我们大大提升办事效率。这里给大家介绍11款程序员软件,建......
  • 前端调试技巧:从 Console 到 Chrome DevTools 的进阶指南
    作为前端开发者,你可能每天都在和Bug打交道。有时候一个简单的问题可能会耗费几个小时,而掌握正确的调试技巧可以大大提高解决问题的效率。今天,我就来分享一些在实际工作中常用的调试技巧。Console的高级用法除了常见的console.log,Console还有很多强大的功能://1.使......
  • mfgtools烧录流程之烧写方法
    Mfgtools工具是NXP官方提供的用于其系列产品烧写系统的软件,可以从官方网站下载,我们的ELF 1开发资料包中也放了这个工具,路径为:ELF1开发板资料包\06-常用工具\06-4烧写工具\OTG烧写\mfgtools.rar。该软件是在Windows下使用的,建议在Windows10下使用,对Winodws10系统很友好,接下来......
  • 真·保姆级——在VMware的Ubuntukylin上进行Hadoop单机_伪分布式安装时安装VMware_Too
    目录一、前言二、版本信息三、hadoop用户创建1.创建hadoop用户2.在创建hadoop用户后对系统进行重启四、解决办法4.1更改默认登陆用户4.2安装VMwareTools4.3验证VMwareTools是否安装成功4.4KO!!!4.4.1卸载安装的VmwareTools4.4.2安装VMwareTools所需的组件五、可能遇见的问......
  • Visual Studio 、 MSBuild 、 Roslyn 、 .NET Runtime、SDK Tools之间的关系
    1.VisualStudioVisualStudio是一个集成开发环境(IDE),为开发者提供代码编写、调试、测试和发布等功能。它内置了MSBuild、Roslyn和SDKTools,并提供图形化界面来方便开发者进行项目管理和构建。与其他组件的关系:MSBuild是VisualStudio的默认构建系统,用于管理项目的构......
  • dracut 与initramfs-tools 区别
      initrd与initramfs  dracut与initramfs-tools的区别dracut 和 initramfs-tools 都是用于生成initramfs(初始RAM文件系统)的工具,但它们在设计理念、功能和使用方法上有一些显著的区别。dracutdracut 是下一代的initramfs系统,与传统的 mkinitrd 相比,它......