首页 > 其他分享 >ECOM 2001 Description

ECOM 2001 Description

时间:2024-12-24 19:52:29浏览次数:3  
标签:Description ECOM need returns 2001 each answer your points

ECOM 2001 Term Project Description

Due 17/01/2025 at 23:59 AWST

Introduction

The aim of this project is to prepare, evaluate and analyse stock market data and to recommend an optimal portfo- lio consisting of two stocks. You have been assigned three stocks, all three must be included in the analysis which works towards your recommendation of a final optimal portfolio. The project requires a deep understanding of both the statistics and the mathematics components of this unit. It is recommended that you work on this on a weekly basis.

YOU MUST USE THE STOCKS ASSIGNED TO YOU. Any deviation from the assigned stocks will results in a grade of zero.

Refer to the rubric at the end of this document to understand how this assessment will be graded. In particular, note that all figures need to be numbered and labelled, and you need to include all the steps to involved with arriving at each of your answers.

Your final report should be a pdf document. An RMarkdown document to get you started is available on the unit Blackboard site. Show all of your coding by keeping echo  =  TRUE. Make sure to update your name and student ID in theYAML of the document.

You are NOT ALLOWED to engage any AI-assistive platforms to complete this assessments, unless you are told otherwise (in 2 questions below).

1    Import Data (2 points)

Import the adjusted stock prices for the three stocks which you have been assigned.  See the Markdown file for hints.

2   The Analysis

2.1    Plot prices over time (4 points)

Plot the prices of each asset over time separately.

Succinctly describe in words the evolution of each asset over time. All axes and figures have to be properly labeled and described. (limit: 100 words for each time series).

2.2    Calculate returns and plot returns over time (4 points)

Calculate the daily percentage returns of each asset using the following formula:

rt = 100 ∗ ln (Pt-1/Pt)

Where Pt is the asset price at time t. Then plot the returns for each asset over time.

2.3    Histogram of returns (6 points)

Create a histogram for each of the returns series.

You have to explain your choice of bins.

You will need to carefully label all axes and figures.

You are expected to: - Write a short paragraph to describe the trend of each time series; - Discuss the formula to calculate the bins.

(Hint: Discuss the formula you use to calculate the bins)

2.4    Summary table of returns (5 points)

Report the descriptive statistics in a single table which includes the mean, median, variance, standard devia- tion, skewness and kurtosis for each series. All tables need to be correctly labeled.

What conclusions can you draw from these descriptive statistics?

2.5   Are average returns significantly different from zero? (6 points)

Under the assumption that the returns of each asset are drawn from an independently and identically dis- tributed normal distribution, are the expected returns of each asset statistically different from zero at the 1% level of significance?

Part 1: Provide details for all 5 steps to conduct a hypothesis test, including the equation for the test statistic. All steps have to be shown and this part has to be repeated for each hypothesis test. (1 points)

Part 2: Calculate and report all the relevant values for your conclusion and be sure to provide an interpretation of the results. (Hint: you will need to repeat the test for expected returns of each asset) (3 points - one for each stock)

Part 3: If you would have done this question 代写ECOM 2001 Descriptionusing Chat-GPT, what answer will you get?  (hints: you will need to describe how you prompt the question in Chat-GPT to guide the answer (1 point), would expect your answer to be different or similar to your answer above and provide your rationale? (1 point))

2.6   Are average returns different from each other? (7 points)

Assume the returns of each asset are independent from each other. With this assumption, are the mean returns statistically different from each other at the 1% level of significance?

Provide details for all 5 steps to conduct each of the hypothesis tests using what your have learned in the unit. All steps have to be shown and this part has to be repeated for each hypothesis test. (2 points)

Calculate and report all the relevant values for your conclusion and be sure to provide and interpretation of the results. (Hint: You need to discuss the equality of variances to determine which type of test to use.) (3 points)

If you have a chance to engage Chat-GPT, how would you approach this question? That is, you need to clearly lay out ALL STEPS that you would ask the question to Chat-GPT. (1 points)

Now, compare your answer to Chat-GPT, why do you think your answer is different or similar? Please attach a picture of the screenshot of the answer you have got from Chat-GPT. What do you learn from this exercise?  (1 points)

2.7    Correlations (2 points)

Calculate and present the correlation matrix of the returns.

Discuss the direction and strength of the correlations.

2.8    Testing the significance of correlations (2 points)

Is the assumption of independence of stock returns realistic?

Provide evidence (the hypothesis test including all 5 steps of the hypothesis test and the equation for the test statistic) and a rationale to support your conclusion. All steps have to be shown and this part has to be repeated for each hypothesis test.

2.9   Advising an investor (12 points)

Suppose that an investor has asked you to assist them in choosing two of these three stocks to include in their portfolio. The portfolio is defined by

r = w1 r1 + w2r2

Where r1 andr2 represent the returns from the first and second stock, respectively, and w1 and w2 represent the proportion of the investment placed in each stock. The entire investment is allocated between the two stocks, so w1 + w2  = 1.

The investor favours the combination of stocks that provides the highest return, but dislikes risk. Thus the investor’s happiness is a function of the portfolio, r:

h(r) = E(r) − Var(r)

Where E(r) is the expected return of the portfolio, and Var(r) is the variance of the portfolio.

Given your values forE(r1 ), E(r2 ), Var(r1 ), Var(r2 ) and Cov(r1 , r2 ) which portfolio would you recommend to the investor? What is the expected return to this portfolio?

Provide evidence to support your answer, including all the steps undertaken to arrive at the result. You will need to solve the optinmisation problem using pen and paper, and you need to typeset your answer. You can then scan as picture to attach here as your answer. You can show the summary statistics using the coding learned in class, but the optimisation problem has to be solved by hand.

You will need to get your instructors to validate your identity of your work by asking them to sign your work when you complete it. Without their validation, you will automatically get a zero for this question.

Note: You will need to typeset your answer. Then, you need to put your name and student ID number on every page (and side) of your work. You will have the instructor to validate your information by signing your answer sheet. Then, you can scan the answer as picture(s) and embed it here as your answer.

Submission

1. Submit the pdf output of your completed project to the Turnitin.com link on the BlackBoard site for our unit.

i. Keep the sections as they are in this document

ii. Ensure that all Figures and Tables are numbered, and have appropriate captions.

iii. All your calculations and steps used to produce the results should be included. So include any math- ematical calculations and set echo=TRUE in all of your code chunk headers, including those used to generate figures.

2. Additional details

• All results (numbers) should be accurate to 3 decimal places.

• Proof-read your report - do not include spelling or grammatical errors.

标签:Description,ECOM,need,returns,2001,each,answer,your,points
From: https://www.cnblogs.com/MATH1131/p/18628495

相关文章

  • 3 | NicheCompass:空间邻域注释
    今天为大家介绍德国环境健康研究中心Mohammad Lotfollahi实验2024年2月发表在BioRxiv上的空间邻域注释工具NicheCompass,可以进行多样本间的相似邻域注释。是我目前用下来最好的工具。(文末附有官网教程链接,写得很详细)语言:Python。该算法运用了图深度学习(graphdeeplearning),依......
  • 程序员实用工具之推荐(Recommendations for Practical Tools for Programmers)
    11款程序员实用工具,老少皆宜优秀程序员之所以优秀的原因并不一定是他写代码的速度比所有人都快,但他解决事情的效率一定是比很多人都要高的,提升工作效率的方法并不需要我们十八般武艺样样精通,有时候使用好的工具就能帮助我们大大提升办事效率。这里给大家介绍11款程序员软件,建......
  • 时间序列预测论文讲解-[ICLR 2024]TIMEMIXER: DECOMPOSABLE MULTISCALE MIXING FOR TI
    [ICLR2024]TIMEMIXER:DECOMPOSABLEMULTISCALEMIXINGFORTIMESERIESFORECASTING研究背景与动机模型和方法多尺度混合架构Past-Decomposable-Mixing(PDM)块Future-Multipredictor-Mixing(FMM)块代码思考参考文献:图片来源:代码来源:研究背景与动机现有方法的......
  • 中国上市公司供应链信息(2001-2022年)-社科数据
    中国上市公司供应链信息(2001-2022年)-社科数据https://download.csdn.net/download/paofuluolijiang/90028697中国上市公司供应链信息数据集(2001-2022年)提供了深入研究中国上市公司在供应链管理领域变化和发展的宝贵资料。该数据集覆盖了2001年至2022年的时间段,包含了丰富的信......
  • [NOI2001] 炮兵阵地
    题目Description司令部的将军们打算在 N×MN×M 的网格地图上部署他们的炮兵部队。一个 N×MN×M 的地图由 NN 行 MM 列组成,地图的每一格可能是山地(用 HH 表示),也可能是平原(用 PP 表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部......
  • 【Tensor Computation for Data Analysis】T-SVD(Tensor Singular Value Decomposition
    什么是T-SVD?T-SVD(TensorSingularValueDecomposition)是针对三维张量的一种奇异值分解方法,类似于我们熟悉的矩阵的SVD(奇异值分解)。T-SVD是基于t-product的分解,可以将张量分解为三个部分:正交张量、对角张量和另一个正交张量。它在信号处理、图像修复、视频分析等多维......
  • NKOJ 1209 并查集【NOI2001 Day1 T3】食物链
    NKOJ1209并查集【NOI2001Day1T3】食物链思路:带权/种类并查集方法一实现方法用带权并查集带的权值是边权,不是点权,用来表示两点间的关系,但为了方便记录还是用点权,每个点记录到根节点的权值。在getf函数中注意更新是到根节点之间的权值,用\(val_x=(val_x+val_{fa_x})\bm......
  • ppdcheck.exe 是一个用于验证 PPD (PostScript Printer Description) 文件的命令行工
    ppdcheck.exe用法ppdcheck.exe[-选项]文件名...其中选项包括:-b 尝试首先读取缓存的二进制PPD数据。-k 保留二进制PPD数据。-p 使用PT扩展检查驱动程序的devmode大小。-vN 设置驱动程序版本为N。N可以是3或4,默认为v4。-wN 设置警告级别为N。-h ......
  • 2001年国际数学奥林匹克预选题数论部分P2:不定方程组、构造
    题目考虑方程组\begin{align*} \begin{cases} x+y=z+u,\\ 2xy=zu. \end{cases} \end{align*}求实常数$m$的最大可能值,使得对于上述方程组满足$x\geqy$的正整数解$(x,y,z,u),$总有$\dfrac{x}{y}\geqm.$提示 根据前一命题的思想,$z,u$应该落在$x,y$之间,......
  • P1463 [POI2001] [HAOI2007] 反素数 (DFS)
    题目链接:https://www.luogu.com.cn/problem/P1463找最大的g(x),如果最大值相同,x最小。由算数基本定理:数x的约数个数是∏(ci+1)。n最大是2e9,2^31>2e9,2*3*5*...*31>2e9。由此可知:1.ci之和一定不超过30;2.最大的质数不超过29。由贪心,要找不超过n的最大的反质数,选择的质数要尽量小,......