首页 > 其他分享 >面试题整理12----K8s中Pod创建常见错误

面试题整理12----K8s中Pod创建常见错误

时间:2024-12-24 10:28:13浏览次数:5  
标签:面试题 12 yaml master01 1.14 ---- nginx deployment k8s

面试题整理12----K8s中Pod创建常见错误


在Kubernetes中,Pod是核心资源对象,其稳定运行至关重要。然而,Pod可能会遇到各种错误状态,影响其正常运行。以下是一些常见错误及其解决方法:

1. 镜像获取失败

此错误通常是以ErrImagePullImagePullBackOff的错误出现.

1.1 ErrImagePull(镜像拉取错误)

Kubernetes 无法从镜像仓库拉取容器镜像。
可能的原因包括镜像名称错误、镜像不存在、认证失败、网络问题等。

1.2 ImagePullBackOff(镜像拉取退避)

类似于 ErrImagePull,但在多次尝试失败后,Kubernetes 会进入退避状态,等待一段时间后重试

1.3 故障复现

root@k8s-master01:~# kubectl get pods
NAME                               READY   STATUS             RESTARTS   AGE
nginx-deployment-d556bf558-9swpd   0/1     ImagePullBackOff   0          46m
nginx-deployment-d556bf558-d2482   0/1     ErrImagePull       0          46m
nginx-deployment-d556bf558-r4v4z   0/1     ErrImagePull       0          46m
root@k8s-master01:~# kubectl describe pods nginx-deployment-d556bf558-r4v4z |tail -10
  Normal   Scheduled  47m                   default-scheduler  Successfully assigned default/nginx-deployment-d556bf558-r4v4z to k8s-node03
  Warning  Failed     46m                   kubelet            Failed to pull image "nginx:1.14.2": failed to pull and unpack image "docker.io/library/nginx:1.14.2": failed to resolve reference "docker.io/library/nginx:1.14.2": failed to do request: Head "https://registry-1.docker.io/v2/library/nginx/manifests/1.14.2": dial tcp 162.125.32.13:443: connect: connection refused
  Warning  Failed     46m                   kubelet            Failed to pull image "nginx:1.14.2": failed to pull and unpack image "docker.io/library/nginx:1.14.2": failed to resolve reference "docker.io/library/nginx:1.14.2": failed to do request: Head "https://registry-1.docker.io/v2/library/nginx/manifests/1.14.2": dial tcp 69.171.229.11:443: connect: connection refused
  Warning  Failed     45m                   kubelet            Failed to pull image "nginx:1.14.2": failed to pull and unpack image "docker.io/library/nginx:1.14.2": failed to resolve reference "docker.io/library/nginx:1.14.2": failed to do request: Head "https://registry-1.docker.io/v2/library/nginx/manifests/1.14.2": dial tcp 157.240.11.40:443: connect: connection refused
  Normal   Pulling    44m (x4 over 47m)     kubelet            Pulling image "nginx:1.14.2"
  Warning  Failed     44m (x4 over 46m)     kubelet            Error: ErrImagePull
  Warning  Failed     44m                   kubelet            Failed to pull image "nginx:1.14.2": failed to pull and unpack image "docker.io/library/nginx:1.14.2": failed to resolve reference "docker.io/library/nginx:1.14.2": failed to do request: Head "https://registry-1.docker.io/v2/library/nginx/manifests/1.14.2": dial tcp 108.160.165.48:443: connect: connection refused
  Warning  Failed     44m (x6 over 46m)     kubelet            Error: ImagePullBackOff
  Warning  Failed     12m (x4 over 28m)     kubelet            (combined from similar events): Failed to pull image "nginx:1.14.2": failed to pull and unpack image "docker.io/library/nginx:1.14.2": failed to resolve reference "docker.io/library/nginx:1.14.2": failed to do request: Head "https://registry-1.docker.io/v2/library/nginx/manifests/1.14.2": dial tcp 108.160.172.1:443: connect: connection refused
  Normal   BackOff    2m8s (x178 over 46m)  kubelet            Back-off pulling image "nginx:1.14.2"

1.4 解决方法

  1. 下载镜像
  2. 修改并上传本地harbor(或者保存到每个节点)
  3. 将deployment中image修改为内网harbor镜像
# 下载nginx镜像
root@k8s-master01:~/yaml# nerdctl pull nginx:1.14.2
docker.io/library/nginx:1.14.2:                                                   resolved       |++++++++++++++++++++++++++++++++++++++| 
index-sha256:f7988fb6c02e0ce69257d9bd9cf37ae20a60f1df7563c3a2a6abe24160306b8d:    done           |++++++++++++++++++++++++++++++++++++++| 
manifest-sha256:706446e9c6667c0880d5da3f39c09a6c7d2114f5a5d6b74a2fafd24ae30d2078: done           |++++++++++++++++++++++++++++++++++++++| 
config-sha256:295c7be079025306c4f1d65997fcf7adb411c88f139ad1d34b537164aa060369:   done           |++++++++++++++++++++++++++++++++++++++| 
layer-sha256:8ca774778e858d3f97d9ec1bec1de879ac5e10096856dc22ed325a3ad944f78a:    done           |++++++++++++++++++++++++++++++++++++++| 
layer-sha256:27833a3ba0a545deda33bb01eaf95a14d05d43bf30bce9267d92d17f069fe897:    done           |++++++++++++++++++++++++++++++++++++++| 
layer-sha256:0f23e58bd0b7c74311703e20c21c690a6847e62240ed456f8821f4c067d3659b:    done           |++++++++++++++++++++++++++++++++++++++| 
elapsed: 826.6s                                                                   total:  42.6 M (52.8 KiB/s)                                      
root@k8s-master01:~/yaml# nerdctl tag nginx:1.14.2 harbor.panasonic.cn/nginx/nginx:1.14.2
# 将镜像推送至harbor仓库
root@k8s-master01:~/yaml# nerdctl push harbor.panasonic.cn/nginx/nginx:1.14.2
INFO[0000] pushing as a reduced-platform image (application/vnd.docker.distribution.manifest.list.v2+json, sha256:3d206f335adbabfc33b20c0190ef88cb47d627d21546d48e72e051e5fc27451a) 
index-sha256:3d206f335adbabfc33b20c0190ef88cb47d627d21546d48e72e051e5fc27451a:    done           |++++++++++++++++++++++++++++++++++++++| 
manifest-sha256:706446e9c6667c0880d5da3f39c09a6c7d2114f5a5d6b74a2fafd24ae30d2078: done           |++++++++++++++++++++++++++++++++++++++| 
config-sha256:295c7be079025306c4f1d65997fcf7adb411c88f139ad1d34b537164aa060369:   done           |++++++++++++++++++++++++++++++++++++++| 
elapsed: 0.6 s                                                                    total:  7.1 Ki (11.8 KiB/s)                                      
root@k8s-master01:~/yaml# cat deployment.yaml 
apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-deployment
  labels:
    app: nginx
spec:
  replicas: 3
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        #image: nginx:1.14.2  # 注释原镜像
        # 使用harbor作为镜像
        image: harbor.intra.com/nginx/nginx:1.14.2
        ports:
        - containerPort: 80
deployment.apps "nginx-deployment" deleted
root@k8s-master01:~/yaml# kubectl apply -f deployment.yaml
deployment.apps/nginx-deployment created

1.5 确认恢复正常

root@k8s-master01:~/yaml# kubectl get pods 
NAME                                READY   STATUS    RESTARTS   AGE
nginx-deployment-8677887b4f-2h2rd   1/1     Running   0          36s
nginx-deployment-8677887b4f-j7kwj   1/1     Running   0          36s
nginx-deployment-8677887b4f-vfmfq   1/1     Running   0          36s
root@k8s-master01:~/yaml# kubectl describe pods nginx-deployment-8677887b4f-vfmfq |tail
Tolerations:                 node.kubernetes.io/not-ready:NoExecute op=Exists for 300s
                             node.kubernetes.io/unreachable:NoExecute op=Exists for 300s
Events:
  Type    Reason     Age   From               Message
  ----    ------     ----  ----               -------
  Normal  Scheduled  49s   default-scheduler  Successfully assigned default/nginx-deployment-8677887b4f-vfmfq to k8s-node01
  Normal  Pulling    49s   kubelet            Pulling image "harbor.intra.com/nginx/nginx:1.14.2"
  Normal  Pulled     46s   kubelet            Successfully pulled image "harbor.intra.com/nginx/nginx:1.14.2" in 3.069s (3.069s including waiting). Image size: 44708492 bytes.
  Normal  Created    46s   kubelet            Created container nginx
  Normal  Started    46s   kubelet            Started container nginx
root@k8s-master01:~/yaml# 

2. Pending

Pending是K8s最常见的一种错误状态,这个报错主要原因有:

  1. 镜像拉取失败
  2. 资源不足
  3. 调度约束
  4. 依赖不存在

2.1 镜像拉取失败

这个在1里面已经详细表述过了,常见会伴有ErrImagePullImagePullBackOff的报错.这里就不再复述

2.2 资源不足(CPU,内存)

这个故障的原因就是Pod做了资源限制或者由于亲和或者指定node等情况,出现CPU,内存资源不足.容器创建后无法提供于是就处于Pending的状态

2.2.1 故障复现

可以看到node节点的内存资源基本都是1G以下,那么当我们申请一个6G的内存作为requests,当pod创建被提交后,一直无法得到内存大于6G的node来调度pod,于是Pod的状态就一直处于Pending的状态.

root@k8s-master01:~/yaml# kubectl top nodes
NAME           CPU(cores)   CPU%   MEMORY(bytes)   MEMORY%   
k8s-master01   78m          0%     1203Mi          15%       
k8s-node01     26m          0%     1091Mi          28%       
k8s-node02     25m          0%     739Mi           19%       
k8s-node03     24m          0%     701Mi           18%  
root@k8s-master01:~/yaml# cat deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-deployment
  labels:
    app: nginx
spec:
  replicas: 3
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        #image: nginx:1.14.2
        image: harbor.intra.com/nginx/nginx:1.14.2
        ports:
        - containerPort: 80
        resources:
          requests:
            memory: "6Gi"
            cpu: "1"
          limits:
            memory: "6Gi"
            cpu: "1"

root@k8s-master01:~/yaml# kubectl apply -f deployment.yaml 
deployment.apps/nginx-deployment created
root@k8s-master01:~/yaml# kubectl get pods
NAME                                READY   STATUS    RESTARTS   AGE
nginx-deployment-554d6d7fd9-62dn7   0/1     Pending   0          6s
nginx-deployment-554d6d7fd9-bcwvt   0/1     Pending   0          6s
nginx-deployment-554d6d7fd9-n9dnp   0/1     Pending   0          6s
root@k8s-master01:~/yaml# kubectl describe pod nginx-deployment-554d6d7fd9-n9dnp | tail -4
Events:
  Type     Reason            Age   From               Message
  ----     ------            ----  ----               -------
  Warning  FailedScheduling  5m1s  default-scheduler  0/4 nodes are available: 1 node(s) had untolerated taint {node-role.kubernetes.io/control-plane: }, 3 Insufficient memory. preemption: 0/4 nodes are available: 1 Preemption is not helpful for scheduling, 3 No preemption victims found for incoming pod.

可以看到有Insufficient memory 的告警出现在日志中.说明内存不足

2.2.2 解决故障

经过我们对应用的测试,适当调整requests.memory的值,使得node节点有足够的资源进行调度,然后重新发布deployment使得配置内容生效.

root@k8s-master01:~/yaml# cat deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-deployment
  labels:
    app: nginx
spec:
  replicas: 3
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        #image: nginx:1.14.2
        image: harbor.intra.com/nginx/nginx:1.14.2
        ports:
        - containerPort: 80
        resources:
          requests:
            memory: "200Mi"
            cpu: "1"
          limits:
            memory: "400Mi"
            cpu: "1"

root@k8s-master01:~/yaml# kubectl apply -f deployment.yaml
deployment.apps/nginx-deployment configured
root@k8s-master01:~/yaml# kubectl get po
NAME                                READY   STATUS    RESTARTS   AGE
nginx-deployment-5b696b7fc8-2gkgc   1/1     Running   0          66s
nginx-deployment-5b696b7fc8-8kt6p   1/1     Running   0          64s
nginx-deployment-5b696b7fc8-dm8jt   1/1     Running   0          67s

此时Pod状态都是Running了

2.3 资源不足(存储)

这种情况也非常常见,通常是CM,Secret或者PVC等存储资源在Pod中申明,但在Pod启动前并没有被正确创建.当Pod创建时无法引用这些资源,就停在Pending状态.
通常会有persistentvolumeclaim "xxxx--xxx not found.的报错

2.3.1 故障复现

root@k8s-master01:~/yaml# cat nginx-nfs.yaml 
---
apiVersion: v1
kind: Pod
metadata:
  name: nginx-nfs-example
  namespace: default
spec:
  containers:
    - image: harbor.panasonic.cn/nginx/nginx:1.14.2
      name: nginx
      ports:
        - containerPort: 80
          protocol: TCP
      volumeMounts:
        - mountPath: /var/www
          name: pvc-nginx
          readOnly: false
  volumes:
    - name: pvc-nginx
      persistentVolumeClaim:
        claimName: nfs-pvc-default
root@k8s-master01:~/yaml# kubectl apply -f  nginx-nfs.yaml 
pod/nginx-nfs-example created
root@k8s-master01:~/yaml# kubectl get pods
NAME                READY   STATUS    RESTARTS   AGE
nginx-nfs-example   0/1     Pending   0          5s
root@k8s-master01:~/yaml# kubectl describe pod nginx-nfs-example |tail -5
                             node.kubernetes.io/unreachable:NoExecute op=Exists for 300s
Events:
  Type     Reason            Age   From               Message
  ----     ------            ----  ----               -------
  Warning  FailedScheduling  16s   default-scheduler  0/4 nodes are available: persistentvolumeclaim "nfs-pvc-default" not found. preemption: 0/4 nodes are available: 4 Preemption is not helpful for scheduling.

2.3.2 故障修复

添加pv和pvc资源提供给pod挂载

root@k8s-master01:~/yaml# cat nginx-nfs.yaml 
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: nfs-pv
spec:
  capacity:
    storage: 200Mi
  accessModes:
    - ReadWriteMany
  nfs:
    path: /nfs
    server: 192.168.31.104
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: nfs-pvc
spec:
  accessModes:
    - ReadWriteMany
  resources:
    requests:
      storage: 200Mi
---
apiVersion: v1
kind: Pod
metadata:
  name: nginx-nfs
  namespace: default
spec:
  containers:
    - image: harbor.panasonic.cn/nginx/nginx:1.14.2
      name: nginx
      ports:
        - containerPort: 80
          protocol: TCP
      volumeMounts:
        - mountPath: /var/www
          name: nfs-pvc
          readOnly: false
  volumes:
    - name: nfs-pvc
      persistentVolumeClaim:
        claimName: nfs-pvc

应用配置后故障消除

root@k8s-master01:~/yaml# kubectl apply -f nginx-nfs.yaml
persistentvolume/nfs-pv created
persistentvolumeclaim/nfs-pvc created
pod/nginx-nfs created
root@k8s-master01:~/yaml# kubectl get pv
NAME                                       CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS        CLAIM                     STORAGECLASS   VOLUMEATTRIBUTESCLASS   REASON   AGE
nfs-pv                                     200Mi      RWX            Retain           Bound         default/nfs-pvc                          <unset>                          3s
pvc-0748bb20-1e4a-4741-845c-0bae59160ef6   10Gi       RWX            Delete           Bound         default/pvc-nfs-dynamic   nfs-csi        <unset>                          32d
pvc-7a0bba72-8d63-4393-861d-c4a409d48933   2Gi        RWO            Delete           Terminating   test/nfs-pvc              nfs-storage    <unset>                          32d
root@k8s-master01:~/yaml# kubectl get pvc
NAME              STATUS   VOLUME                                     CAPACITY   ACCESS MODES   STORAGECLASS   VOLUMEATTRIBUTESCLASS   AGE
nfs-pvc           Bound    nfs-pv                                     200Mi      RWX                           <unset>                 6s
pvc-nfs-dynamic   Bound    pvc-0748bb20-1e4a-4741-845c-0bae59160ef6   10Gi       RWX            nfs-csi        <unset>                 32d
root@k8s-master01:~/yaml# kubectl get pods
NAME        READY   STATUS    RESTARTS   AGE
nginx-nfs   1/1     Running   0          9s

CM和Secret等资源也是类似.

2.4 标签选择器或亲和

这类故障通常是由于标签选择或者强亲和造成没有配置正确的node节点或node节点没有足够的资源

2.4.1 故障复现

给node节点打上worker=true的label,这是我们在配置deployment时错误的将nodeselector设置成了错误的值,这样pod状态就会变成Pending

root@k8s-master01:~/yaml# kubectl get nodes --label-columns worker=true
NAME           STATUS   ROLES           AGE   VERSION   WORKER=TRUE
k8s-master01   Ready    control-plane   94d   v1.31.0   
k8s-node01     Ready    <none>          94d   v1.31.0   
k8s-node02     Ready    <none>          94d   v1.31.0   
k8s-node03     Ready    <none>          94d   v1.31.0   
root@k8s-master01:~/yaml# cat deployment.yaml 
apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-deployment
  labels:
    app: nginx
spec:
  replicas: 3
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      nodeSelector:
        worker: node8
      containers:
      - name: nginx
        #image: nginx:1.14.2
        image: harbor.intra.com/nginx/nginx:1.14.2
        ports:
        - containerPort: 80
        resources:
          requests:
            memory: "6Gi"
            cpu: "1"
          limits:
            memory: "6Gi"
            cpu: "1"

root@k8s-master01:~/yaml# kubectl apply -f deployment.yaml
deployment.apps/nginx-deployment created
root@k8s-master01:~/yaml# kubectl get pods
NAME                                READY   STATUS    RESTARTS   AGE
nginx-deployment-86895b4d79-dm6z4   0/1     Pending   0          84s
nginx-deployment-86895b4d79-tptlw   0/1     Pending   0          84s
nginx-deployment-86895b4d79-v6bfh   0/1     Pending   0          84s
root@k8s-master01:~/yaml# kubectl describe pods nginx-deployment-86895b4d79-v6bfh | tail -5
                             node.kubernetes.io/unreachable:NoExecute op=Exists for 300s
Events:
  Type     Reason            Age   From               Message
  ----     ------            ----  ----               -------
  Warning  FailedScheduling  104s  default-scheduler  0/4 nodes are available: 1 node(s) had untolerated taint {node-role.kubernetes.io/control-plane: }, 3 node(s) didn't match Pod's node affinity/selector. preemption: 0/4 nodes are available: 4 Preemption is not helpful for scheduling.

2.4.2 故障修复

这里一般2种做法.

  1. 修改deployment中的nodeselector改为正确值.
  2. 可能生成环境中不想停止应用,那么就给对应的节点打上指定的标签
    我们这里修改yaml中的nodeSelector然后重新部署
root@k8s-master01:~/yaml# cat deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-deployment
  labels:
    app: nginx
spec:
  replicas: 3
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      nodeSelector:
        worker: 'true'
      containers:
      - name: nginx
        #image: nginx:1.14.2
        image: harbor.intra.com/nginx/nginx:1.14.2
        ports:
        - containerPort: 80
        resources:
          requests:
            memory: "200Mi"
            cpu: "0.1"
          limits:
            memory: "500Mi"
            cpu: "1"

root@k8s-master01:~/yaml# kubectl apply -f deployment.yaml 
deployment.apps/nginx-deployment configured
root@k8s-master01:~/yaml# kubectl get pods
NAME                                READY   STATUS    RESTARTS   AGE
nginx-deployment-55cdb49d65-2jkxl   1/1     Running   0          2s
nginx-deployment-55cdb49d65-bdltk   1/1     Running   0          3s
nginx-deployment-55cdb49d65-cb44w   1/1     Running   0          5s

常见的一般就是这几种情况,基本就是依赖未实现造成的,一般用kubectl describe pods <POD_NAME>就能发现问题,然后根据报错进行排错就可以了.

3. 补充:Pod常见状态及原因

常见的具体状态或事件

3.1 ContainerCreating(容器创建中)

  • Kubernetes 正在创建 Pod 的容器,但尚未完成。
  • 可能的原因包括等待存储卷挂载、配置网络等。

3.2 ErrImagePull(镜像拉取错误)

  • Kubernetes 无法从镜像仓库拉取容器镜像。
  • 可能的原因包括镜像名称错误、镜像不存在、认证失败、网络问题等。

3.3 ImagePullBackOff(镜像拉取退避)

类似于 ErrImagePull,但在多次尝试失败后,Kubernetes 会进入退避状态,等待一段时间后重试。

3.4 CrashLoopBackOff(崩溃循环退避)

容器启动后立即崩溃,并且 Kubernetes 正在尝试重启容器,但连续失败后进入退避状态。
可能的原因包括应用程序错误、配置错误、资源不足等。

3.5 Running - Ready(运行中 - 就绪)

Pod 中的所有容器都在运行,并且已经通过健康检查,可以接收流量。

3.6 Terminating(终止中)

Kubernetes 正在终止 Pod,可能是因为删除 Pod 或者节点维护等原因。

3.7 Pending - ImagePullBackOff(待定 - 镜像拉取退避)

Pod 处于 Pending 状态,并且因为镜像拉取失败进入退避状态。

标签:面试题,12,yaml,master01,1.14,----,nginx,deployment,k8s
From: https://blog.csdn.net/qq_29974229/article/details/144658638

相关文章

  • 十三、二叉搜索树
    一、概念1、定义性质1、空树是二叉搜索树。2、若它的左子树不为空,则右子树所有结点的值均小于它的根结点的值。3、若它的右子树不为空,则右子树上所有结点的值均大于它的根结点的值。4、它的左右子树均为二叉搜索树。对于任意一棵子树而言,它的根结点的值一定大于左子树所......
  • 今年读过最绝的一本书!仅仅449页,学透大模型技术—《自然语言处理:大模型理论与实践》NLP
    《自然语言处理:大模型理论与实践》是一本由赵宇教授和任福继教授主编的书籍,专注于自然语言处理(NLP)技术,尤其是在大模型技术方面的理论与实践。这本书详细介绍了大模型技术在自然语言处理中的应用,包括语言模型的基础知识、大模型的关键技术,以及如何在实际中应用这些模型。......
  • 驱动钛丝(SMA)的可靠性设计(12)生产过程中的偏差和误差
    【前言】形状记忆合金(Shapememoryalloy,SMA),也叫形态记忆合金、钛镍记忆合金,它是由Ti(钛)-Ni(镍)材料组成,经过多道工序制成的丝,我们简称钛丝,可以通过电路驱动钛丝发生运动。相比于传统的电机、电磁铁动力,钛丝是一种新型的动力元件。钛丝驱动技术目前已经在航空航天、洲际导弹、......
  • kolla-ansible 部署多region集群
    1、先说什么是多Region2、多Region的应用场景:•1、Openstack集群位于不同的区域时,可以用多Region来管理,比如阿里云的北京地区的云主机、上海区的云主机等•2、可用于异构管理,比如当Kvm和Vcenter同时被Openstack管理时,由于网络、镜像等原因必须使用独立的环境来纳管,此时......
  • Yolov8-pose关键点检测:轻量化注意力 | 单头注意力模块,并行结合全局和局部信息提高准确
      ......
  • Yolov8-pose关键点检测:单图像超分辨率 | 空间频率注意力和通道转置注意力,恢复高频细节
    ......
  • DevExpress WPF中文教程:Grid - 如何移动和调整列大小?(二)
    DevExpressWPF拥有120+个控件和库,将帮助您交付满足甚至超出企业需求的高性能业务应用程序。通过DevExpressWPF能创建有着强大互动功能的XAML基础应用程序,这些应用程序专注于当代客户的需求和构建未来新一代支持触摸的解决方案。无论是Office办公软件的衍伸产品,还是以数据为中心......
  • 汽车门店销售效率低下?高效协作工具了解一下
    在数字化转型浪潮席卷各行业的当下,传统汽车门店的销售管理模式正面临巨大挑战。从客户管理到销售流程优化,如何提高协作效率、降低运营成本,已经成为门店经理不得不面对的核心问题。其中,在线协作文档工具正逐步成为解决这些难题的重要一环。销售管理中的协作痛点汽车门店的销售管......
  • 2.3T算力,真的强!1分钟学会NPU开发,基于NXP i.MX 8MP平台!
    科技飞速发展,人工智能与工业领域的融合日益深入。NXP旗下的i.MX8MPlus作为一款高端工业处理器,NPU算力高达2.3TOPS,正引领着工业智能化的浪潮,为众多工业场景带来了前所未有的变革潜力。图1 i.MX8MPlusNPU特性i.MX8MPlus的NPU支持INT16/INT32/FP16/FP32等多种数据类型,......
  • 26. Java IO与 NIO的区别
    Java中的IO(Input/Output)和NIO(NewInput/Output)是两种不同的处理输入输出流的方式,它们在设计、使用场景和性能上有显著的差异。以下是JavaIO与NIO的主要区别:1.基本概念IO(传统IO):指的是Java中传统的输入输出流,通过java.io包提供的流类(如FileInputStream,FileOutputStream,Buff......