首页 > 其他分享 >爬虫Js逆向 -数据加密板块

爬虫Js逆向 -数据加密板块

时间:2024-12-21 23:02:09浏览次数:6  
标签:enc 加密 Utf8 爬虫 Js parse CryptoJS data

分析步骤:

  1. 第一步分析是否为混淆JS

        判断是否为混淆JS   看调用的堆栈名称是否简洁易懂   下图为非混淆

  1. 无混淆的情况下
  • 关键字(不可以很泛)     
  • 跟栈 拦截器 response
  • JSON parse  hook
  • decrypt(

本文讲的是非混淆的数据加密 跟栈

网站: 资讯-精灵数据

  打开网站 右击检查 or F12 打开开发者模式

        将页面滑到最底部 点击下一页 监听我们想要的数据包 

        此数据包为包含页面的数据

        查看加密的位置  请求头  表单 都没有加密  加密的是放回的数据 

解密步骤:

  1.         点击此数据包  点发起程序  可以看到请求调用的堆栈 
  2.         点击进入我们的异步回调对象

      3.在前面打个断点  重现点击一页数据  是程序断在我们所断点的位置

        作用域可以查看 函数参数  函数内部变量 确定变量作用域范围等

        4.点击e这个数组  可以看到我们的response 请求

         

        点击进去查看 是否为我们参数密文所生成的位置

        最后在此处找到可能的加密位置  打个断点 让我们的程序停在此处 

         

        发现可知 data 为加密的密文  并且是个AES 加密  可以使用第三方库进行解密

                接着将JS代码扣到本地JS 文件中

var e = y.a.AES.decrypt(data, z, {
    iv: y.a.enc.Utf8.parse(j.substr(0, 16)),
    mode: y.a.mode.ECB,
    padding: y.a.pad.Pkcs7
});
    return JSON.parse(e.toString(y.a.enc.Utf8))
}

        引用第三方库crpto-js  需要在node.js 环境中运行 再下载 npm install crpyto-js

        将所有的y.a替换为变量名  CryptoJS 

        运行代码  哪里  is not defiend 就去补全此代码 变量

const CryptoJS = require('crypto-js');


decodeAES = function (data) {
    j = "DXZWdxUZ5jgsUFPF"
    z = CryptoJS.enc.Utf8.parse(j);

    var e = CryptoJS.AES.decrypt(data, z, {
        iv: CryptoJS.enc.Utf8.parse(j.substr(0, 16)),
        mode: CryptoJS.mode.ECB,
        padding: CryptoJS.pad.Pkcs7
    });
    return JSON.parse(e.toString(CryptoJS.enc.Utf8))
}

        再次运行代码发现没有报错   代表成功  接着测试是否成功解密  把data 的值复制下来

const CryptoJS = require('crypto-js');


decodeAES = function (data) {
    j = "DXZWdxUZ5jgsUFPF"
    z = CryptoJS.enc.Utf8.parse(j);

    var e = CryptoJS.AES.decrypt(data, z, {
        iv: CryptoJS.enc.Utf8.parse(j.substr(0, 16)),
        mode: CryptoJS.mode.ECB,
        padding: CryptoJS.pad.Pkcs7
    });
    return JSON.parse(e.toString(CryptoJS.enc.Utf8))
}
data = 'Ou1c1U7XU3pQRu0GosMzTJyXpwwrY6Rb8ddM+PVbBREEO3bdLrG0Yl86DLKtaZD+OynogXzHwFiF/jYx18hk7baQBRznd1LMdMhboFCOvqquueMXRWUjf2TU/gRs63euRqTNuU/wgX3mWBVuLTfLLqfOeRkly0H80Hz4GuSbPKmXIwzVzuXc2pVjX91Pbo7bQurdPq0lQwDZjj9rkczX6F2yJ81WtDWhT4yBMzZ07L4TFPn6PNjwoFoansHaLdqrCCJnU0udoP8LrD+IBmMCrEWfHKYXTgnzpvvotMYB5hT9wCmx5rFWpIZMb3subixoKLbeXhu4Oi91mfIo84TIiN3jsM1rTLmgNoNObMHYcdiOhqtxj/Y57Ko5XZMb8fZ+zl2C3fLU63GO7YnvY1f9hwJIYUgn/GFkvRJLgvXVvOZHk5vs9pXQXGtDkJ03ga7dB+ow3zwQhzyFYqvRRpq1VhAkL8/t/uyFbmEwLJfs1DJpzI/QJ04Mx2oZA8h0mM7WqUVChqQgs2DuCKYNNUL0aBcjObztQNMCrsuHyYzNAQ46I9BActAoG5+i4lLVd4cvrOSSyXvof9GCbIVYACkq4BlRJpECiCeNMbnBDubXAB17WeYWGKIJKO6X66lybapDiJgJuh4ukmLHFY/Wtt1bo6dXqF13G+hhCF1j7XUDCy4pzwn3QN8UZfFfz0vm0294hvPyYvHEkBiPDUZAXd2I8aqiJbQr7J+ORwPBqnORoVGvA7tRhlYow6nJNXr1nzP+B8cR0cmNFuQ8z73UbkIbYXffzrOMBdv8GPeed/BOc2GUqTWetDUAtEwhGH3ECBHvmFhP6Y35E6py9TcX9wAyyNqE22/WlfYYheO6cxyNNNwH324mhheNZbS3gbbGH1YC6bvwnYOe4/qRg9A+iT8ZC+RScCI5F7cjxHoTN7EZcThcG6vH4KcBXnOV+xbZm+RFjxYeMwtRk9EKfftCjIJZzZpddseo+hCj8KagEbf50xP9NrdQlMMFElZayhYEGbHd9g8+bnlv2JVi4QUSfkDinU8KtqGSnwEhNyj1OVyNcJvHBCFMWblInJPs8Endus/JLPw+4/ULEca3b6nqyC2fZehEDlBmY25Qzdi5UyGusQYl53jROj6RDsz9CRf27WCB8ewVqv5oOeLRdcG4piNxC3323OK/z3tBqOseFdwKiQkv+L569kT/2oVXgiMTBcvwHACeomCNmJWv52F5eKj+49WFkLpu4W/PBXAkd/523VnTkmp+amKAz21SblaqYEq9q2njLn4btb46EEMkB5FqzA6i+0DkMAIBGB/yzJo7Sz2FB5Cya/6keRKZAGwfDK9rdVplxIrwhdT8PThl9xT52OnM1phfR8s+bmKbhnVE4ZW9CfOUGzS2zJMlJX0g+pbtMZoqF8K8ZYcXchWxTSXUS0FUNhw/SMRQqR+eiGS8cwXSgaOS40L6JwUdG2LyuvFSUCSClErqEOL5RSbz/84c6LM1XdFiXeTngCId4X/+dpzZ2ue1vhhOJFJ3iJisc2HDN/Ptbxx5XVVgqhOFY5yVH5U4UfLGtVTVWBhd92S8u5cac6Pgcoi7l1SToNsJT+bqdqZARlPEJ0cyww8pBS51jPnFnPwIT2aSiAlUn8QhWrvzzn03uNDZp4wxvrWzQ+usREqIuZ5AbhEzyHOdxhtR/O0WD2hDSHaDt4eA+ZH9JAiOV2E2IMg3lj9vNQVwhWe+VQf8fTHH/BY5c5uMJlAd1jb0ScIhCEQS/tgcIEC9Zg8EC2Q5zAf+fl98vxteA5dNO5KFvqky4VxHSP1Z6LadL5/WgkDwIIzBq5LxHRq8Qe+qKW8CzoRu9WOFUvQ2EryxRyPmNMZ+/M7pLo3QYbKjid3KQAs0NW2GV2MleYZLXzOxLgiLoTeV3RGO0QsXMpwIbqWcGA6o/mFlBnhpkf+Vf3JNoGLPShxU7PyjK6mIsemhTwHxsqTSm9Nc044FSkSN4VqvTWeu1kfTIABliN/wv8cm78DkctTeu8NXg5+QDI4Mb6/fldaL7cLeEKnJJfeD0mAmCYqjH399xbihw6MHsNflGjpQIJBlAHJhQRwiYWw6RsY7k5esSSY+sGeImdDp/K5vIQQHcIuDJMxnppJQZSgt85PRAGtv4ff+Z1blCG+M+UEM5BbDqQ1pJ/rixMdvz24rhwNCzij8qfsO32OXJO9fABaaxi9Tf7KfwZS8BITbQV2hsFktDDlpC+MgrMbehUneXXpE0CinxcnAy3ri0Q6WxXEgyPCwAkzu57uD8zXEUR2nkLseAlcuHzK4tctWbsRUrEk55cWP+1wbsSj5Ru2dDQeJhqFJr6ElE7gvlspwBPHhLcR6od/yBXfJ18ySX2xceG9XwCMFhGzjZ/7SW+HxT/hV7oBkyaZze2Adjr3rIEPhKAPAWPQoIt3aBythc8zWp29Sap7jZ/TQUwp+aN0mpuysn2BfxzoXYJMnhJX2l83v0Ef8C6a/Vbe4I0OWodQ1Y6CC5D1zjsBu4Lh5dhHhDABaO1ETh3nEd7TnxtXvPpIqmuCjn8zResztqrqt8Kr9+l06AlRdGOkIheDbtTmoRY+M7wcEctIDcevG0er3px93ALSpRVWLMk/aP2M8Lqu7K/SL+uK4WoEU2CjxJwzfgipFa8gmTuJeTrJ5DbTS41FL9+HmCjImTRmbJgcyDEUAYnc6YHVe6IU7l90DaXrvFDxC1gkbTH/D086VC8dQygnEHyRDo3ZV0WCcdcKCKZnMcNCzHUWvsabLTyOKj3iqrbtd19Fvyj22J5AYB4HvVwtDaT5b1RHb00uvDapUXi5gGyinzvNvtxhiSvh7lK1FJKtPXo6nHCmfPPhk+X0/bx8AVHlopi2jay5qyxyziUSYUyIH/87+b3Ho564tPQ6Umh9mqwFdEgKcKM+x7Lo01LECfYtSOsQcV1bLkevsHRd667X6Ln0+9ZbWRESrEAM3cKVjtgwUAC6gKZew6miLPOel8WPa0SI8FAv+fq1yFmdTosYbX7pbOwyDvDLRX+U/FAZTnHbfuIkO8r/M/yIvOLXmW9+XCVIAnESIb0EYMeBB2F/SKNMEW5KtKmGQGVoNN93QPUveo7DFzl9FtkaCYW2NrXA52B8H8bxEH9JQPQ+oDhmTlFb7O2ezlxjm+pUKajxy/SBHYTgAphiI1PPQ7zqO/dkINN6y2bKHXqS/t6fek41cGSGiqfiN4UbNdElda0UKVgBLhIyQB1gJanqt09xACpWo1tOaTBIqmWEmiA+1qquzrNTj0ZhkVR/UFncPynxGL0KAQt2ZRiQmbfriAHpmBmO6VTz3Ao8dh5y3OtlMDwfXe1z2GXCpABJaCbm7bem+DNytHLkIlc810TLGfOAC9F2+oqxwRVtmKSqRtdTvloagkaKrfEvsgJ2kNeCzHB2caKl9EIbK5uGids2JRJhTIgf/zv5vcejnri09DpSaH2arAV0SApwoz7HsunVdnuOwql90x98HxG7ldfXyLMonSRsGy0fJ56Li9mqgGLB8NdniUG6vbvQH/ySGxIRYztMX6zYfMqe3z1uiQtjo+yJWNbuohUdFFidhnwG+AHDgQ5wiRSfmsVUXSindjSkdsOqL/dTFTC0WtEa3FZO9oQwNhfbebMPkzTSZLS5/rNhms+3qzdA5ABbY86LTeDXyZXPfD0kFt2ww7AVOSCRcFeNffYIBro2pwdHOs9BtFPWAZ71EPLk0Sdoo4NKYcSZhKYPKRhMJWupa8mWhJLmaIPsY3riggRN6h8sMe2vjam590/E44bekdG+niBXragp5OmssjXd46qGCboGgh7IbFT/MtUrj8he4NO7fibcbMzacAHM6q5ism8gel17gyViLHC4Hz4yifjRbiAVjOMc7r9uv2U/vcv6L2smzu0OM96v2SrkSLxR/hQfo7QPyyJygemI0y5nxyjz4JID8MhX7tk2p6OQeIEz7n2IQc9aq1nomuJLuu9p8SBPE7IRycAaUKhVhD6DlEDAf8xgQxymGdgF+D8D0kVpQXYuwqPQBHE7ePlyGVrf4U4h4iFunrj3ThaLcHsOq6b2oUYt1XopAEk/eNZidelDzw7W/ktwlOkciTwvBQ7CTaTgh45VmpDZq7eTqBzl672lhxhOWoOOENZbA/xtNKWtqKfOQ1zFrPDBhhuXY+Te7gu+buXTCjw1hNh0ESSL5VCSrgIPBn4DTeTGuWfOyNFWZcCHVjptCktjHEVFSaf639HooQZOH7LF9x9MXV+jhDWD3Xaah+PCD1jXLI/2Psprm4kWL3oCmHYFxKHxky70vZ1tF4Wb3qtAdwXgmHw4j/LETZtOjTf/TJPS6xJlH+4Kd1XvDqRIl/3y0SXGQXxGQeZa/AwbjEmAkYIu+8lW9dmZAPaSB7htOgKA29RrKQi83EWxSCvSFus1uPKkunsU09+7am478ujjMtOPx7wFkCGgqADwmLQ3lPxQGU5x237iJDvK/zP8iLzi15lvflwlSAJxEiG9BGLJH7o5ntGXoD8nvzEDvvpCxxWklCTx1tIWdQE2e9c5Tx/38cI/Ax0YyW15/9OwiRj0PqA4Zk5RW+ztns5cY5vqVCmo8cv0gR2E4AKYYiNTz0O86jv3ZCDTestmyh16kv7en3pONXBkhoqn4jeFGzXRJXWtFClYAS4SMkAdYCWp6rdPcQAqVqNbTmkwSKplhJogPtaqrs6zU49GYZFUf1BZ3D8p8Ri9CgELdmUYkJm364gB6ZgZjulU89wKPHYectzrZTA8H13tc9hlwqQASWgnpHAXuIY7odp9HaP+/KdaVanq8YhSX2On1j51y0i8KON3KQAs0NW2GV2MleYZLXzN7WeYWGKIJKO6X66lybapDhkQUTsHW3JxwyHJR4928YUN0zq0zgDxiP2ZXlrVX2VG1174IfE79chSSjwB+efD25bOB41GqgWiOoAarFoG3l1YJrzkFgKnpFf4Ly2jbf5CKbi7H2wS7VBoAo6D85Mkjh4d2OgAw4gYUbVu7bHiM39H9qPUcT3fqJOGXkrIkd8VF11BQwcZrv4WWR0Szv3M9V5+MGTHdeKO3M2rOPOaaAmUqQ9BjXH3mrYPEnQFGJ2IdhHs8G2Sh7M/LI43nRfJExFqq2pbdzL1gSvfD0KQcDvk8STnkeApx4DyrlWb5n53GIQ5QEzHeh1qo1HoncuZruWl0GgVg+nO7DBuStL5Fp/V51xP8e2fbgEOyGYfeH5o+XXq5VA68VnYYQ9Gxvs3+qLtbcz9LAkdR7FM6AFCrbgIOVcQudqTmGEB++zgvMARBNnMPGIP7nobLcQtyLeu7UR30FfIXzrMcHFE0sYg/pL9fhcWoGQC0irIbvQMGzRCwbKuPhEa3vBREW0MZ8FZq4wIRqK2GslfH56Gg82AbaWRVlSaqbV1vpIgpYMHs2QeIYT+uUfz+CBIWgV7yPmcsy5adBnHohCXiV/UIEHTBaK2QZKojPlqwBf3GyqN3S7PAIkinjiaSCSOglnnw3yHYxdyRsQZGBWmZTB9lWF1lyDbV+KyrDNYYkmX1vdpMwpg+msuyGSDHCmEtj9ZRvRp00ygXENC0MF8mQhgbkiLrg3no9tVayMeMMLpFpr1NaTgIQaJiV1hY1ZCejjw2eHHzfVTJU2xiYBe+5ssh1sJexnjrZm29WTA4VMqGR1anBoVwywAEo07SPWqwdMs7bgSsLNwHkLQ5axBgsVKGuUAKPl8LPR3DbFwOpw9Asl4daLBlVFq1HNMsy9toown15/jLeKqtu13X0W/KPbYnkBgHgZaNxCo9AoDcAdmZovCiZWroc+0U5xmRHgdovjW67/pQCwtCGH5Gr2Mov4PD5auxCLwnzMePPtOuGUizkG75Nndpla5yFB4d2Ayh264YVh+TB8D06es2vl1tEI7gdxhjjiZQVTGKfOIWVnolFl8wOuE5XKFsjUL54wWIEPlP5uxbyBiLDTRSrqbihSoXyzXlaZ3/PWjAZ87+rkQHxCGHLHB/jxNhWWDgl5M/1fMBgEaVtCjJjQiYH/gLNFnuuHbZuRzPPLUkI1qdbK6Z1HP622veniLj8i1cEuOTnn1Nn0Jds7TpYs5pARWoQ7mBdE7OKFwo4l1iV+mOqnDpkzpB6iTrtEkD2kB4E5R9jwnnNUohppaARtqtayno3fEsizIU7pkKdVk1bscUxPw24DfTDKU9D6gOGZOUVvs7Z7OXGOb6lQpqPHL9IEdhOACmGIjU89DvOo792Qg03rLZsodepL+3p96TjVwZIaKp+I3hRs10SV1rRQpWAEuEjJAHWAlqeq3T3EAKlajW05pMEiqZYSaID7Wqq7Os1OPRmGRVH9QWdw/KfEYvQoBC3ZlGJCZt+uIAemYGY7pVPPcCjx2HnLc62UwPB9d7XPYZcKkAEloJQG8Rwpd+OH9Wh2JsKqAL0bxgUit8Yc4CFs/uMd9Y0hC11O+WhqCRoqt8S+yAnaQ1I5ZX1jtMlDnk77g8G2NyD3L6CTT0WyzMHBAYt7DZoKMbXR+QKQ/lLmcJCNvuIKLpRPKeozTc/wYx0V7uZWTAnlycqKhBu9kDcGkVtRM5lxXnJaYLc/bEa4eBDvp6Is6X6eZuswyPCQvBQMGqc7P/nhhoYzpr744ISLk1gGCKcvsqCjdmMe9IycDaFLI68x8oW/+E1+MSsxa6qofnFgdcAxbBGJKCS0Jt6t17axKdaqXxmeNdqoEMEFuDowH+lEl3KFjlrUowq7LeSf1ElmwBCSU4Yc2Ta1PdA+thst1tP2vMPtc01F7xEcMYcHp4U/3ACG4sJssT3joYJDxqip0oBpuWxLRoNGF/u+uKrSB7KuqH+elv/1JRjReQfK6PIYJwTj+Aq61aFhwKhXF6QjUeNsedEhPREIgDqmmdgXrCvQzatMhCX3GVXPLPudemAEBDYipXQveG6kU/rugJJMxKlnKye8vEfkFl2PqKtctTA3PC4mg5A6/OgKd5gP+st02OR51gkKf9Fjzu/AKReh15OAbQd6Ypqh4ChFwTq9zxcMej6jhYzJuzNfuCGO3SIkUD4C0OdHvPwE7bqFNNmpVyOC84teZb35cJUgCcRIhvQRgk4RwRMyCojGGz5ap1y5BVs15qPTkGXAMp/Mk/qMhSGe7Bw1ZCPyIu0cXUPRF+nmordo4KHsbaqDc3B/Hmm+SvFTyDprr6S0+MQsdraK9q7E2lTxCvEqeWhXTCOo83Ydo9wLgn79uj3PwaBhn/axBgXNYyGBnUK/vrq0gTrtJPw4aRQWKKBFoksOfMum1v9Sz14300qt1bXplwZS33+xEA6IAocZCMCqYPc/xFcjlA71lvnBcFSCJsJYI+SKt+DpHPTNVXU1Lq7p4k8haioHwyeyHa+fICVLqsFISYm0VL6Sp6qfASnpHoVBRmmGqD+rDvR1NXp+XbjUkvoX0LXChRn9bs/retfuIgAwnhKTaN+ezj+FmW1LJDlW+e5mym3mupkf+O5ic1xMLubAFfdVKTlQpqPHL9IEdhOACmGIjU89DvOo792Qg03rLZsodepL+3p96TjVwZIaKp+I3hRs10SV1rRQpWAEuEjJAHWAlqeq3T3EAKlajW05pMEiqZYSaID7Wqq7Os1OPRmGRVH9QWdw/KfEYvQoBC3ZlGJCZt+uIAemYGY7pVPPcCjx2HnLc62UwPB9d7XPYZcKkAEloJeovShYdtEr/ZAkOpG0qhO2hYDOqnFb3E099l13MDoGPgGUbIexZkuPUC4S8my7biEkPLHJdzHLRPDK29+0mCG6800aXunU3Ce3BHgeANzY1s2fM5lnISVxT9D3K/AXLboRPjUKoBCjVsX5IpluSISUGrk9q9OMHw3xud4KkXsEgLZR8jOAV7g62pmNiOtLWRVZh4PFBnGlEwDWqledNyzkJpnuohtT2C7s5jltqeZSntcDuGaVvKtT2N/gw0FGrz3YNr6egFEHVhxQg6JeSDqo9CR9xlXmxG2iGIgm6ruUpspTyV2F0LL8bOUIzfUSqLnaqz34qgJZvV6ot/YGCvutJgJgmKox9/fcW4ocOjB7ClPAI3DGRu36JOnVEBriqkvuKedDXmute+qTa8Vm+988vaSferJaPGvqWy8aBCY+mAEgbJBbDrI+2SNcIPW+5We1bfaBGI2lSJVLOeN6gixSYDnKanbTE31Ff3YTlbT1MbEmUraKtFbCxz5RovAEowAPiY7dPs4Tt1fylV81Gydux2GjX6Y6NCMKmMStQfVeJECR1kc2f/0sUlEdMuqUFDBkT5wKCuoseid+7Qd/XOIJUZ3n6fqOuo1djM7XmgypEp5rUfHj+WD4ENMmj2uyJNFQpZGXGeT3gkqV7soPNsMITqGpZOlb5/7yQA5bDQYZmLehloOUwlLcVToFenydGSR2VV9d9+Np0cnm6s2B8HdV67GC9EgUPO0tACqBCVKFpvpAQZVX2e3RFyyQDfUQ5nifS5NS1HAld3O9VVmI/+KJgL7Q3b5kMmKyE55wruke/jdeSFGOQdDXhDG7BO39p1hix2B/RfKZTZpmR8q4ZVVUKvSTi3gGISwSVtGxLWEJl4BPJhY+sMHEQrDwkGlD2CjLqAThJCR73i9syVeomgcTiAfTdwRyMKqO+kRUTsJRzLlp0GceiEJeJX9QgQdMFoQjXFITJ+7uWnMTdORQoAQeLB9nOvuB/Frrfbl5s8PWlex7BR5Y9d0ly1W6oYpd6VpjswMt8EqFfmgwuE9kgcawTDU8lQjNp1LA3tZg2HzPGc6TxP9qAt/6Md3wdLCePGfVKqBcTcXigyL6qnPIlw2d2mayFN0GvRSUqZzjefJn/qBzkx8i2OU6/AQWYqxXnbyrG/ofdp2MDN41v1juje3K2HI5eyVWuOHQKzk2RQIDmudL2Z4crETWC1ux1E4c2v3LqdlQuCxau59VAYW0k9w4+mh7n83e3r8N1ofO3JiPHPJMEUy99Zk9uVGJRE5TeCZXFcFj/QDFhvARm0Fo2krjNW7mC07h43typxT9DhEPNrh/o5keAQdQA0TZMPuks7HY1NmJg1XbJG1oeaJpX2oJe5hdu/UJc1xcETz5/8kBFrWOlD0ty7EnOY8KNMShI16F6XzmQGriOmvk1sRvJWHcCGYf+x5aAjtjx+3BXk/UNLt9iqRUuwWibfOMGb03WFrg/5iqnWnE2Y4anAMNwli2/WGyuwCglCsxUWOJvETRveHTlq64ES5TfS/OaPoJ8QneHDm9Sg9GVfW50dHl59EwpVPTcj2JtktQl7mUOecM/EZ2iks3psH4ydCXMbezHKaMPZmn3O6s6N9qXskDyA15wqQPyhhWQMB81vLLThb65E/caY5AuBuVtcF6GwGRGlcC6yq7nUdqWexBiQYWCCTA7P6FkLhXxxrNnDExwBCekrEciWmBKdCLz1kzvF9BVBqb9X7tD2RtIzmy9rseAlA4bCLAfrR7WSZJFPFXHlQt4JOGs5yGuX/bF0ifhOH63/fNGQQW+JgpjC/cOa/73O2+4uQhu92o2coVJIGBXzqfyCwRMFy4nqVUAeFGw6kEC+wbBVJsQ82zV8rMM8uyFkxHx1+kBa0BoBcYZypcXFACkMtQoz9p5Yty2i1yonvVW4zTu1ZFFgo6RkRFDq2q08Mx6Cv72bJYAN9gmFt1sb4MmASNUXGEFs5fvghJU7faF5N47pb12fPlv/IXV+myZAThjB/+7RZzTN5Xgvc+XkMSiRCEQZ/sLDNgbNcgGQxQJR+gJcSAfm/26Pjq423me2h6tWJfydYuABUGEb53RrlGWGa70ESZVwpH/eUYZeEWqROw3J3w+nwg8pBKCCq8Jq1zIFM2aq00oVRTcywcLIZnjA1traYTv4BY08zcg8Hrv5tVCU6qr5viltbs1jR/1p7eysUfYacXiXoOLx+LLU5yeASoO7xFOkalaJ6y7mgVVWqWdiSm3caCWu0Inj20Nok0LcOefyiwtr4PEQVLMn0S5O1N11iPCHnUjnrsiyy/e37jMjaakfFhsDrS+Eq6II1LQuPuPYdDLdgNTIdZr/d/1EIt+mlOJdfyuI4An7DTDJC2UfIzgFe4OtqZjYjrS1kVWYeDxQZxpRMA1qpXnTcs6BntikHFPTe8hriDEjHvFhlQL0mznRx+Z/rgdxPj3JkiMu9SZSzbvy5Goxglkx9YSdP3ElWwgUG8P647GE+fTc+gJcSAfm/26Pjq423me2h6tWJfydYuABUGEb53RrlGWuAYvQoVkR2xoUJnA6QIyWxK0Y52JVMNLsAqVAyh+B2mFWPHsrvovlP/Hbw8DHqOxZKLMdZsAanoEzRGHdf/SjHqCpUpqjGZqNKAJMJ/rJwQTOOX2Wusxj5oRxhwhNGQW4fjt7UiVKP2Z+o1xW+0757lnRoaiH0s9nCzW318cnZxUcnDpx4GfeOUc69NLOzGB38wSAI1/HjXcYdx8z5v5QkojO2z8Qf99sXC5dhHIkNJw9nYeGUV7bB/ZcFl8Y72REIt+mlOJdfyuI4An7DTDJC2UfIzgFe4OtqZjYjrS1kfoIDmSt4xxuzDJxzuwda6BUyxxMApF1MB+qwt42QjLpkU5D9BScIxIwWdwdlv9vQ2UDzCj3ps9WWRbGJPLZ00HC2pOo+79fDpe6LWwEC2un+gJcSAfm/26Pjq423me2h6tWJfydYuABUGEb53RrlGVXx560gzIW+/HUPjDHVZNpZTd/tb0L1a64RfShcqqjluRct4/6jORvjB/OR0gxqSdxTaa0mNMzZ2/RL06o/hvxjZOQtpCIHPHz4dMZddecVntW32gRiNpUiVSznjeoIsVdVAgmaGEhBQIZmq08r+jNGxJlK2irRWwsc+UaLwBKMPygidY9ycMqPHixBP/qkBUAioW7at7Cp3neo0/DTk7SynhMXzpm4tX/dLyYLHCXS0SVH+aLK9pRIBoHaBxDoy9yjWVtIOdAXcblCFaGgSM9+gJcSAfm/26Pjq423me2h9rigrkRCO3BTAaDkbrYLjIcUg/mfvWioBGtKgDxHI+FrOMjr3/CaTyOYDmNk4tfmVwhl4aUb8fPTdIkMrdufiHlPrnoz5KERT8qysccSS/6HUfa+z7bheFMCgE/F3HUe2fpS+FUrYDhMZgLefvzc26CFJzjgZYjW4BB7yIWHn/h4mrT3PkFKq/J1F63EKKmLYDkRs6bP37qrDhQccDmvt+2hg4Vx2aLPTaj6PybcORM43XkhRjkHQ14QxuwTt/adYYsdgf0XymU2aZkfKuGVVVuUT9YArwEYFv/Lc6zx90HE7dm1Cy8I5Nao3xjDyV0b8vJCRUewJENk9zT1V9IXTnMVwA6ZbJqGUHLuDb6zkTNJernfoL1a8qLBA3zon2EwZ/XXSpDsBHvBUsWTfyaWCFtDanmZlWm4H4xxxLbN3CaYSLTKNTfNcPUCJ+tzUER42sa3G9hMTdzCo9qBPH59HQsgU2xvNSlXjoHiPYYQF11SLoD/k/r7Ts8TTRxdVaSESHKcFdzYMAKv7fO2flstQNqbn3T8Tjht6R0b6eIFetqyBxjaytov3/3thheu+FAfd8gqh4onquCYLdwGZbWVhIZDONTX2tVcqHENoEMrnD1DWE2HQRJIvlUJKuAg8GfgNN5Ma5Z87I0VZlwIdWOm0J89GjdP1H6ORpl2hR7I0trK4AnxQnbwijnmmk6vTwM03cqJZ7Ae0M+rChx0wwYUWiASoO7xFOkalaJ6y7mgVVWqWdiSm3caCWu0Inj20Nok3vyVqaVCE/gRgfj7k3pyPntTTrm6GaDd5LZ4bjjOJc4k0cG59NThSA5u4O3CJTsdXikHkss8AMnGDdTnH98Fcv2CilGEcL+MT7JEVaB5PbQb2j/9u0HpMMFiRmGKhkeptnwnDr9euEIfCV4ARrJklIRRpmfdcIBflQUiIBk3W11cN9iyaO0ClcEicOgNTRhY5NRN/stQ8v6hUyPEnbe5ADDXJbz3btPHymlCRprTGhKZf9Dp6sX2TRz5EAvwRQbm5mMIAO7IEjDYxsZSLK4kgu5PTq0YaR4vhibj/aNMACY6ASwsdu8SDhdl60RIwQVfwVT/dJLAXP9kbWhzV3BlLEl5vJksbxn6CWovH83FlLSmCy/VTIVqXPgggdhorc2a8g5JN7SGwGDjMxLMopQql1rfl1uleJRqbYudpbilWWSkoJn+CLEOKDeEg8qC9XDBoA9djv9oy/xlIQAMbifRQ+uUcKbVJzgwYSDO5r28PJDJernfoL1a8qLBA3zon2EwZ/XXSpDsBHvBUsWTfyaWCFtDanmZlWm4H4xxxLbN3CaYSLTKNTfNcPUCJ+tzUER42sa3G9hMTdzCo9qBPH59HQKikpZ8i4L1ydjS8lez8r1SLoD/k/r7Ts8TTRxdVaSESHKcFdzYMAKv7fO2flstQNqbn3T8Tjht6R0b6eIFetq59gYDQY31CLTtgwrDVktDqCcPZCYVYJz3eYfVkQxi7e0/t3WuCZNuojw+K1oew+oHqOuvRa9UvsTO+gxXhCHD7C7i9c5x98U/DpPAcBiD40lo40mDPJ3Em2zMr+J3XR9PcC4J+/bo9z8GgYZ/2sQYPxAkY+ukS1UEj6WahYpR4kVoB3+w7COb2uU/QSpoZtn9eN9NKrdW16ZcGUt9/sRALMHraI0KJTJD4aL78LZ9W5jAqimDsRzlEgimhz4SilX91O2LtquoqIF5cFa6+4EsJgdwdrqFVMIopdZaun+kCMsmy2ovGZpcK7DiGTUXfr8lSFMWTCZfxoI0AA05q4/ptJ6MWXXOP4r4R1i/mu1UR0A/NePa7NnXPCXB4AqVKxiOGieuQj0yd7NE6y6yeZmzy8p6zON6/tUIxhxdfbEKGvQ5+IH1JeSTJUuuLamDHOZBalnTvREmlawiEzJt5/yGOTqObAnQuOayGCljSasJLXNcZEpB3KxkwLseJjcYGvK1gdjX7Vjm50XwwRTIPOmpmoRlMkL50IXAjakeRVyqh6uxavHQOQXXdHjwpF84dtaTr88dG4W2t4+RK1cCtV9sQZRQz4Kh7PWF5csxw+W1wCKZzjqm4Q26Wa+CP/Oy5U0XCjiXWJX6Y6qcOmTOkHqJFMfjex9iBqPWUDI4jdTrYr8eC/yYb4nndqQX3VqGuiqvmVoFnJxWH5mSKz/x95Yku8B+p53BYDhKkFnXpIPd2m5RCL++fiWTD3bAfoiCeuQQkb20FWuMr/mTG/AC0UuMJNMKHE1d6sXiUX77I+hKVntdkKQ8+hrq8QiIJMuESFZjXQMhEwjb8m7OuLUMkmnRVKDeieFEnF9dk084jwsjb8sc7OuzB5BbyVskCKZwnCPLEd3ZyYHJ/U1PUgbmIMZVKmXnYywrPQU9bAspgpQlHeC0R1e3cp86LgW5l78ANPrylci277sjOKdAFS+03SPNu9U+EmFB91XtzVNnebEYaL1rVU5+K00i6UrgNgbpwbFagxfuHs1N6Wfh1tOFE/14+eXI0q4Clnz3E/CnF1y2go1ImbCwk2vzlIUor1D/9xDp8ugfoeVqyZiNUL9AwtvqK4rFT6e4RkvBj/fo+I34VZ5vChq1hhTCwgFCOydHOOIuOlhd08K/gXwGM9QIaM5ELfDn6jnuGtLFB+QqMYabE0kDWrsCFuRJ2ptGL6ZEzYScRhVLogg2jJFvk06FldhgDt/3nJM0JofkZ6opBvlEa5UumMWfK0tS1eZfcq5YeTGGkLGp65ESE9y1ECrT6IsboJfRqO8HftkccGAq/240wsjDZfH98t1lYUsfap7PD3JOGmqE11iT+bNIsXiTaK3qf2i88a+0uy0NZCtpURCKqHloDWX4j6+xyDsqNwizPyQWHb/rsatBrp88vtT93OpmaPLuDkZfaXliokZ6f3ABoXJWvRLBox1tBwfLHU1wqZ/XbVaSoZjbc8XSNJ3juMA49hL0vDZ5PtyJr9sejGsuTzhWq9NZ67WR9MgAGWI3/C/ZEa3nAgLHD6BJBHr9shTjvho1WVGLuTfwIe37jecq2g3WmvZvxFasSBdeTI7V+C3uKwys85ohY0n+5bZsMdVExH7CvBQ7tnYw6nPvJxT5RCzJZZZmSGwmhQYqRLJ+cgBA4n21M5VPhch3mOG29U8hL5cCpY5uqsZaCP8DzNvaCw0PdIB1hD1J15z1M3WeeZBTdIrCSp5PjiAuCEWna5vPQhBomJXWFjVkJ6OPDZ4cfMq3YcbMYaAHFhF/sZxvZ5NC8kQKzv6IRL87+scZhH6U0Eh51mrIgk5u8mMXg2BM15eOUTRGhvs/DTlbzhQgM6A7Wq1hjJSAJ7Iu88/1rmjf+cD9wcIvOqW6n22XAUbm7NSu9oChny4z/E5YS3GReBaJBho3xlT2qSerfGPdGduIST4jEkTLWNVlP44JHG+2nSakAQfPZfoWKcasnv/wJStC6pQehjgkrAIYTCkgcl4SIEAYFZTaitOge29c6YAx4G2JYB42RO6wOzp+F1HpGziZiSu4AvcqHfIayGuVFyu+012H7sK/0pAH3h3vJ8NYNI6yzTaMzYT10FJgq9643AGA10+SPeWU+tdXhWCdJFvE0KOHuAcmVZGAybUDek3dSttVpwAzllLbw9jFELhE1dnk0wocTV3qxeJRfvsj6EpWQHEW+i8dhRIKUbZei+zm6+6r0Dy1/j1/+ZM4Yw+M+fIQNlz+iJar74FBZKClYVTZMZzb025nzC5rixhSCDF3cdpvDS4gpaRnevHTvVTMJ44ovdGVBQ19fAu8R/uetVAl6AYIMxF//4H+pdwGX0+l/Q/rNS1Fotv501KcLSwQ+y1r49lcwH1WFqbNBAMHpwTJoplsjxSXpZnmYCQC7ir+vy3l4A4ISL6Rgg0jRJqUHzGmcq9sb1Zcg563jpWcl5q8Xw1aQyL1T7yuL2kZXRiMqyuQYt07TaWpUKEuQo+F7UZTYYwriZBlmFjLuUAfRQ5pmkfvSAX/CiEzcQ0QGYous5uRxT5PGPkT3+3S/y+ecqQPQG87N453FTEBGkmgxZ04q/63ZdpbDJIbqvu+1b1w/+R84OUj27EBS2rVGx+DmQpNSQ+xyFl0L72oTqAf4zaRqwdk60dgoI3/SSghz0KjMMaYFPWfSXr4a1bPXm9/EqxQyEi8gaVpfNF2TPGGXvSfJEA1nOf9UT58QrsICejB6E6jLCWYKoIeBXh/zQTc/xTI0N5SoWB/s5FCHSjaQRsIsa0zpjamCgMyN92Q6iKBxJN7kQK9p/uDqFkx3EX319S5nzie7asV9a+L7DF/wkkb+Bw6FddPlXk7CSyDVBwjruuUcKbVJzgwYSDO5r28PJDJernfoL1a8qLBA3zon2EwZ/XXSpDsBHvBUsWTfyaWCFtDanmZlWm4H4xxxLbN3CaYSLTKNTfNcPUCJ+tzUER42sa3G9hMTdzCo9qBPH59HQKikpZ8i4L1ydjS8lez8r1SLoD/k/r7Ts8TTRxdVaSESHKcFdzYMAKv7fO2flstQNqbn3T8Tjht6R0b6eIFetqQ9yvZRwUlkK1VjIFdsPzhxLHKxpdseXLmoSspbhZtLq2xkoSSYkGr7vsXk3QLoZ2DWE2HQRJIvlUJKuAg8GfgNN5Ma5Z87I0VZlwIdWOm0IJSrNKPo9Wk2Eubh3Lu12tsX3H0xdX6OENYPddpqH48EDRZ9fsA9GH+RuOJsGEL5EGDhLzIHzLK8FHhD8LpL053F6BstEGMv779RB7L4KQNJo+SU6DNBjwB/FOtGJ2Q2fDqlX9HJC7/E9YfaPE6JcmRz/iNyF+9tcbdS3ZSFoFjjQ90gHWEPUnXnPUzdZ55kFYixwuB8+Mon40W4gFYzjHO6/br9lP73L+i9rJs7tDjPer9kq5Ei8Uf4UH6O0D8sicoHpiNMuZ8co8+CSA/DIV+7ZNqejkHiBM+59iEHPWqg8zhcLHBbeyOUz38kVGRBkGlCoVYQ+g5RAwH/MYEMcphnYBfg/A9JFaUF2LsKj0ARxO3j5chla3+FOIeIhbp64904Wi3B7Dqum9qFGLdV6KCoFT6+GqH+PG7yoo/UTHzLRBxjQ6KRroBzGI2+WhPafquzNqimMKlYLS+toHF+mvEkPLHJdzHLRPDK29+0mCG1Ewnf/uekdcNtpseq2CCSXeq3DPUeapdFky7Kr1D7Hl6iT1R6IeDTy7tKMma1Z4VxehfEvbQi6tr/u6QNcMnpauw4zde+jgVNibyTFueAmjy5Nzl3SSh9MFWVjBF7mPl2n6pmxqbmGmf1POvMQowt2cCB+4YfR7rGgAToFsAqcQk62PdjdNN/6y+lxin9fIaZwcoWuOMnLcOdUolmLktPg0PdIB1hD1J15z1M3WeeZBWIscLgfPjKJ+NFuIBWM4xzuv26/ZT+9y/ovaybO7Q4z3q/ZKuRIvFH+FB+jtA/LInKB6YjTLmfHKPPgkgPwyFfu2Tano5B4gTPufYhBz1qoPM4XCxwW3sjlM9/JFRkQZBpQqFWEPoOUQMB/zGBDHKYZ2AX4PwPSRWlBdi7Co9AEcTt4+XIZWt/hTiHiIW6euPdOFotwew6rpvahRi3Vein0F3eacLEitB2U/ROv0i2rqKzCpOOcQI1u2ledgyMxlNmrt5OoHOXrvaWHGE5ag4xbhOTaGUckd1HRAhHPMK26tvjinIqF2feUk1wjqVTjZLbrLWV8djGUA+a3fwHQz1trYLoKfV53QEJEIaZj0LvgcVGaeAADHcAdP6FHePWRUpN1jKP6FODauFjxtfVLPTZ73p3GQtc/aB9Ojk4jpSJxDhvujN0wktDPgJOV3NIT4rRtuF2LVAkEODQvBBVX3VASS9VgzlVtyKmqRbZO22ZAiUzCcZqbI7soMrn9+0+1fgqN86XLtrHz0Uei4SbzNgnDZHglajy3ioZiNjCck1hb7d6gGLZKL9tDfgvfaFOZVkmcJ7/cJA4vJMful11EEpZnKvbG9WXIOet46VnJeavFuceSBI184jbyCh4NNWgnI17mZDSCL8non5wC8ysLCVqeOXpBxfa0ie5MUZ7ragL/9LLjVU6pinLWrNI4C+T9qHqevFsxd56ROzKjTvb46BH6mCjaHgNa5lgNfcltS4TkDyXjWT/34hiJkDQMzW/+2MeoQIUkp04RiF/5jiAewnOLg+ko9LjyflwxTXGzrPaukcvjpTfoFhiOgZ1IxbWT2/Ayr8b2dyIdBKl7n+/Pp48w97N8iV6ZvODJ4ul7cfMoxoVb3sqjZYFSD/zg0/7ULY10hc6jhsRKTWTa3cnKSFZSvpa2j4d86qXB/Oby+DYkPW8VBn9JXb0Xwr8PkttyoRlchQi/qbxW0h5ehJmoNnERiWQiDhEJXLu848OOSuVQNOsM1i25KiTkAEaOuvn1/KNhE57G4lvA0CgEF6bn15MJVvqCicfbA5I+yGHr6yvxklfq0QF38ZKzDdIx6X4DRBc9i/nu83dIwwck2PWVn74IyVdg4Cn1g021QZ9vCb1l297Uf3pesHDtEU/vblK+izD7XNNRe8RHDGHB6eFP9wAhuLCbLE946GCQ8aoqdKAablsS0aDRhf7vriq0geyrqwzxI3YE16tg8JqKIWejrrAV4Z1v1WcwF1CBqBn/BLJB/Cb+TISokrbZ2ViP0Y3hxJernfoL1a8qLBA3zon2EwZ/XXSpDsBHvBUsWTfyaWCFtDanmZlWm4H4xxxLbN3CaYSLTKNTfNcPUCJ+tzUER42sa3G9hMTdzCo9qBPH59HQKikpZ8i4L1ydjS8lez8r1SLoD/k/r7Ts8TTRxdVaSESHKcFdzYMAKv7fO2flstQNqbn3T8Tjht6R0b6eIFetqXyDlpAyWBcSXFRtdsHE7hJHsus/hAPqd7JTGhdFVT8e0/t3WuCZNuojw+K1oew+owSNsVN97rF6lTqjeRtP3nFTBB9CUzf7TC14li7PSM5riUYgbdv+RKADiLdXuhqlzQkb20FWuMr/mTG/AC0UuMJNMKHE1d6sXiUX77I+hKVle1yQxGx55xZHYMrDl9h2PhVM+NBHCMmpTuJIEr8lH2VhodGXeYByCtJGpFYFD+Htwrd2c/jmkfHMmuQn8RueI'

console.log(decodeAES(data))

        调用函数 传入参数  解密成功

        主要是JS解密的介绍 学习    本期案例分享到此结束 感谢您的观看 您的点赞是我更新的动力 谢谢 !

     至于保存数据  在其它的文章我有所介绍 可以参考我之前发布的文章 保存直接想要的数据

        

标签:enc,加密,Utf8,爬虫,Js,parse,CryptoJS,data
From: https://blog.csdn.net/2302_80243887/article/details/144636044

相关文章

  • Python 自动化爬虫 绕过JS逆向 爬取淘宝商品数据
    声明:此篇博客仅用于学习交流使用 任何用于非法用途的均与作者无关需要登陆pc端淘宝账号本案例所使用到的模块及工具:Drissionpage  自动化模块  pipinstaldrissionpageJsontimepandas保存数据模块  网址: 淘宝(taobao.com) 爬取步骤:一.初始化浏览器......
  • node.js基于Web的连锁餐饮智能管理系统程序+论文 可用于毕业设计
    本系统(程序+源码+数据库+调试部署+开发环境)带文档lw万字以上,文末可获取源码系统程序文件列表开题报告内容一、选题背景关于餐饮管理系统的研究,现有研究主要以传统餐饮管理系统为主,专门针对连锁餐饮的智能管理系统研究较少。在国内外,传统餐饮管理系统已发展到一定阶段,有诸......
  • QT网盘笔记(日志,qss,加密)
    前言:本章为本人在学习QT网盘时学到的知识,在此记录。一、QT日志1、前因(1)网盘服务端需要记录每一个登陆者登录的时间,账号名,在遇到除操作错误的错误时候会统计到日志中,同时客户的意见反馈也写入其中。(2)加上互斥锁防止多线程写入时混乱。2、互斥锁    (1)定义:在多......
  • node.js毕设基于和vue的直播带货系统后端 论文+程序
    本系统(程序+源码+数据库+调试部署+开发环境)带文档lw万字以上,文末可获取源码系统程序文件列表开题报告内容一、选题背景关于直播带货系统的研究,现有研究多集中在其商业运营模式和市场发展趋势方面3。在技术实现层面,虽有部分涉及,但专门针对基于SpringBoot和Vue构建直播带货......
  • node.js毕设宏泰购物广场停车场管理系统小程序端 论文+程序
    本系统(程序+源码+数据库+调试部署+开发环境)带文档lw万字以上,文末可获取源码系统程序文件列表开题报告内容一、选题背景关于停车场管理系统的研究,现有研究主要以大型公共场所(如机场、火车站等)为主,专门针对购物广场停车场管理系统的研究较少。在国内外,大型公共场所停车场管......
  • 【Web】0基础学Web—函数、箭头函数、函数闭包、函数参数、js作用域、字符串
    0基础学Web—函数、箭头函数、函数闭包、函数参数、js作用域、字符串函数函数声明函数调用函数事件调用函数匿名函数立即执行函数箭头函数函数闭包函数参数js作用域字符串字符串创建字符串方法字符串拼接字符串截取去除字符串首尾空格遍历其他函数function函数名(......
  • Node.js 单元测试指南:使用 Mocha 和 Chai 提高代码质量
    Node.js单元测试指南:使用Mocha和Chai提高代码质量随着Node.js项目的逐渐增大,单元测试(UnitTesting)成为确保代码质量、稳定性和可维护性的重要手段。在Node.js开发中,Mocha和Chai是两个非常流行的单元测试工具,前者用于执行测试,而后者提供了丰富的断言库。在本文......
  • //需求//某系统的数字密码(大于0),比如1983,采用加密方式进行传输;//规则如下:先得到每位数
    //需求//某系统的数字密码(大于0),比如1983,采用加密方式进行传输;//规则如下:先得到每位数,然后每位数都加上5,再对10求余,最后将所有数字反转,得到一串新数;importjava.util.Scanner;publicclassMain{publicstaticvoidmain(String[]args){//1.通过输入......
  • webbroker调用axios.min.js
    <head><scriptsrc="axios.min.js"></script></head><body><p>实现前端调用后端的HTTP请求的方法:<br>https://www.cnblogs.com/hgdzjp/p/9438893.html</p><pid="demo22">aaa</p><scri......
  • 【华为OD-E卷-寻找关键钥匙 100分(python、java、c++、js、c)】
    【华为OD-E卷-寻找关键钥匙100分(python、java、c++、js、c)】题目小强正在参加《密室逃生》游戏,当前关卡要求找到符合给定密码K(升序的不重复小写字母组成)的箱子,并给出箱子编号,箱子编号为1~N。每个箱子中都有一个字符串s,字符串由大写字母、小写字母、数字、标点符号......