Preface
期末周闲的没事写一场小白月赛
我会在代码一些有必要的地方加上注释,签到题可能一般就不会写了.
以下是代码火车头:
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <vector>
#include <set>
#include <queue>
#include <map>
#include <unordered_map>
#include <iomanip>
#define endl '\n'
#define int long long
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define rep2(i,a,b) for(int i=(a);i>=(b);i--)
using namespace std;
template<typename T>
void cc(const vector<T> &tem) {
for (const auto &x: tem) cout << x << ' ';
cout << endl;
}
template<typename T>
void cc(const T &a) { cout << a << endl; }
template<typename T1, typename T2>
void cc(const T1 &a, const T2 &b) { cout << a << ' ' << b << endl; }
template<typename T1, typename T2, typename T3>
void cc(const T1 &a, const T2 &b, const T3 &c) { cout << a << ' ' << b << ' ' << c << endl; }
void cc(const string &s) { cout << s << endl; }
void fileRead() {
#ifdef LOCALL
freopen("D:\\AADVISE\\Clioncode\\untitled2\\in.txt", "r", stdin);
freopen("D:\\AADVISE\\Clioncode\\untitled2\\out.txt", "w", stdout);
#endif
}
void kuaidu() { ios::sync_with_stdio(false), cin.tie(0), cout.tie(0); }
inline int max(int a, int b) {
if (a < b) return b;
return a;
}
inline double max(double a, double b) {
if (a < b) return b;
return a;
}
inline int min(int a, int b) {
if (a < b) return a;
return b;
}
inline double min(double a, double b) {
if (a < b) return a;
return b;
}
void cmax(int &a, const int &b) { if (b > a) a = b; }
void cmin(int &a, const int &b) { if (b < a) a = b; }
void cmin(double &a, const double &b) { if (b < a) a = b; }
void cmax(double &a, const double &b) { if (b > a) a = b; }
using PII = pair<int, int>;
using i128 = __int128;
using vec_int = std::vector<int>;
using vec_char = std::vector<char>;
using vec_double = std::vector<double>;
using vec_int2 = std::vector<std::vector<int> >;
using que_int = std::queue<int>;
Problem A. 最后DISCO
签到题还\(WA\)了一发。。。
明显要根据奇偶性直接判断出来就好了,一个小小的分类讨论。
但是需要注意\(b=1\)的情况。
//--------------------------------------------------------------------------------
const int N = 1e5 + 10;
const int M = 1e6 + 10;
const int mod = 1e9 + 7;
const int INF = 1e16;
int n, m, T;
//--------------------------------------------------------------------------------
//struct or namespace:
//--------------------------------------------------------------------------------
signed main() {
fileRead();
kuaidu();
T = 1;
//cin >> T;
while (T--) {
int a, b, c, d;
cin >> a >> b >> c >> d;
if (b == 0) {
if ((c+d)%2==1) cc("YES");
else cc("NO");
continue;
}
if (a % 2 == 0 or c % 2 == 0) {
if (d % 2 == 0) cc("NO");
else cc("YES");
}
else {
if (d % 2 == 0) cc("YES");
else cc("NO");
}
}
return 0;
}
/*
*/
Problem B. 末日DISCO
题目有一点点的意思,其实会发现我们构造一个
\[1,2,3,4 \\ 2,5,6,7 \\ 3,6,8,9\\ 4,7,9,10\\ \]这样一个对角线对称的矩阵就好了。
//--------------------------------------------------------------------------------
const int N = 1e5 + 10;
const int M = 1e6 + 10;
const int mod = 1e9 + 7;
const int INF = 1e16;
int n, m, T;
int A[510][510];
//--------------------------------------------------------------------------------
//struct or namespace:
//--------------------------------------------------------------------------------
signed main() {
fileRead();
kuaidu();
T = 1;
//cin >> T;
while (T--) {
cin >> n;
int cnt = 0;
rep(i, 1, n) {
A[i][i] = ++cnt;
rep(j, i+1, n) A[i][j] = A[j][i] = ++cnt;
}
rep(i, 1, n) {
rep(j, 1, n) {
cout << A[i][j] << " ";
}
cout << endl;
}
}
return 0;
}
/*
*/
Problem C. 明日DISCO
我们先想一个简单的,如果操作\(1\)的时候:
那么显然我们应该从棋盘的最大值开始,逐渐减少,直到不能减少为止。
所以操作\(2\)对应的就是从最小值开始,逐渐增大,直到不能增大为止。
一个简单的模拟,但是有一点要注意的就是我们在减少的时候可以直接将当前的权值\(val\)变成上下左右四个点中的最值
时间复杂度不会太大,因为可以感性的想到,如果有相邻的情况(正负性一致),那么就一定会不行。
代码写复杂了,刚刚写题解的时候才想到相邻的不行,\(v\)的时候直接暴力模拟去了。。。
//--------------------------------------------------------------------------------
const int N = 1e5 + 10;
const int M = 1e6 + 10;
const int mod = 1e9 + 7;
const int INF = 1e16;
int n, m, T;
int A[510][510];
//--------------------------------------------------------------------------------
//struct or namespace:
struct node {
int x;
int y;
int val;
};
//--------------------------------------------------------------------------------
signed main() {
fileRead();
kuaidu();
T = 1;
//cin >> T;
while (T--) {
cin >> n;
// vector<node> tem;
rep(i, 1, n)
rep(j, 1, n) {
int a;
cin >> a;
A[i][j] = a;
// tem.push_back({i, j, a});
}
auto cmp1 = [&](const node &q1, const node &q2) {
return q1.val > q2.val;
};
auto cmp2 = [&](const node &q1, const node &q2) {
return q1.val < q2.val;
};
priority_queue<node, vector<node>, decltype(cmp2)> F(cmp2);
// for (auto &x: tem) F.push(x);
rep(i, 1, n)
rep(j, 1, n) F.push({i, j, A[i][j]});
while (!F.empty()) {
auto [x,y,val] = F.top();
F.pop();
if (A[x - 1][y] < val and A[x][y - 1] < val and A[x + 1][y] < val and A[x][y + 1] < val) {
A[x][y] = max({A[x - 1][y], A[x][y - 1], A[x + 1][y], A[x][y + 1]});
F.push({x, y, A[x][y]});
}
else {
break;
}
}
priority_queue<node, vector<node>, decltype(cmp1)> G(cmp1);
rep(i, 1, n)
rep(j, 1, n) G.push({i, j, A[i][j]});
while (!G.empty()) {
auto [x,y,val] = G.top();
G.pop();
// cc(x, y, val);
if (A[x - 1][y] > val and A[x][y - 1] > val and A[x + 1][y] > val and A[x][y + 1] > val) {
A[x][y] = min({A[x - 1][y], A[x][y - 1], A[x + 1][y], A[x][y + 1]});
G.push({x, y, A[x][y]});
}
else {
break;
}
}
bool fl = 1;
rep(i, 1, n) {
rep(j, 1, n) {
if (A[i][j] != 0) fl = 0;
// cout << A[i][j] << " ";
}
// cout << endl;
}
if (fl) cc("YES");
else cc("NO");
}
return 0;
}
/*
*/
Problem D. 太阳系DISCO
一眼暴力,但是有一个技能操作。感性的想到,这个技能的操作由于是直接跳到对面,所以应该最多只会执行\(1\)次,那么就直接先不考虑这个暴力走一遍之后判断到达对面点的情况取个\(min\)就好了。代码写起来比\(C\)简单不少\((bushi\)
//--------------------------------------------------------------------------------
const int N = 2e5 + 10;
const int M = 1e6 + 10;
const int mod = 1e9 + 7;
const int INF = 1e16;
int n, m, T;
int dp[N];
bool vis[N];
int st, ed, shun, ni, k;
//--------------------------------------------------------------------------------
//struct or namespace:
//--------------------------------------------------------------------------------
signed main() {
fileRead();
kuaidu();
T = 1;
//cin >> T;
while (T--) {
cin >> n >> k >> st >> ed >> shun >> ni;
st -= 1, ed -= 1;
rep(i, 0, n-1) dp[i] = INF;
queue<PII> F;
F.push({st, 0});
while (!F.empty()) {
auto [x,val] = F.front();
F.pop();
if (vis[x]) continue;
vis[x] = 1;
dp[x] = val;
F.push({(x + shun) % n, val + 1});
F.push({(x - ni + n) % n, val + 1});
}
int ans = dp[ed];
if (k > 0) cmin(ans, dp[(ed + n / 2) % n] + 1);
if (ans >= INF / 2)ans = -1;
cc(ans);
}
return 0;
}
/*
*/
Problem E. 普通DISCO-1
可以想到我们每次的操作都是在一个\(lca\)的子树里面选择的,然后我们每次选择的时候如果是希望向下深度最大的话,那么肯定是向下深度第二的加到向下深度第一的上面,那么我们只需要枚举\(lca\),然后将最大值和次大值加起来取\(max\)就好了。、
记得特殊处理一下如果当前的点\(i\)如果只有一个子树的情况。因为这个\(wa\)了两发。。。
//--------------------------------------------------------------------------------
const int N = 5e5 + 10;
const int M = 1e6 + 10;
const int mod = 1e9 + 7;
const int INF = 1e16;
int n, m, T;
// int ans = INF;
//--------------------------------------------------------------------------------
//struct or namespace:
namespace z {
vector<PII> A[N];
int son[N], dep[N], dis[N], dis2[N];
void dfs(const int x, const int pa) {
son[x] = 1;
dep[x] = dep[pa] + 1;
for (auto &[y, val]: A[x]) {
if (y == pa) continue;
dfs(y, x);
son[x] += son[y];
if (dis[y] + 1 > dis[x]) dis2[x] = dis[x], dis[x] = dis[y] + 1;
else if (dis[y] + 1 > dis2[x]) dis2[x] = dis[y] + 1;
}
}
void clear(int n) {
rep(i, 1, n) {
A[i].clear();
}
}
void add(int x, int y, int c = 1) { A[x].push_back({y, c}); }
}
//--------------------------------------------------------------------------------
signed main() {
fileRead();
kuaidu();
T = 1;
//cin >> T;
while (T--) {
cin >> n;
z::clear(n);
rep(i, 1, n-1) {
int a, b;
cin >> a >> b;
z::add(a, b);
z::add(b, a);
}
z::dfs(1, 0);
int ans = 0;
using namespace z;
rep(i, 1, n) {
cmax(ans, dep[i] + dis[i]);
if (dis2[i] == 0) {
continue;
}
cmax(ans, dis[i] + dis2[i] + dep[i] - 1);
// cc(i, dis[i], dis2[i]);
}
cc(ans);
}
return 0;
}
/*
*/
Problem F. 普通DISCO-2
首先一眼二分,求所有点深度的最大值的最小值。
然后考虑怎么处理,首先可以想到要将深度\(mid\)以下的求一个\(lca\),挪动的时候直接挪动\(lca\)这个点。
然后直接暴力枚举每个点和他交换之后满不满足就好了。
判断满不满足的时候我们就和\(E\)一样求一个向下深度的最大值就好了。
打了两场,感觉小白的\(F\)题貌似是铜--的难度?
//--------------------------------------------------------------------------------
const int N = 5e5 + 10;
const int M = 1e6 + 10;
const int mod = 1e9 + 7;
const int INF = 1e16;
int n, m, T;
//--------------------------------------------------------------------------------
//struct or namespace:
namespace z {
vector<PII> A[N];
int son[N], dep[N], fa[N], dis[N];
//重儿子,顶根,时间戳,子树最右端时间戳,时间戳会对应节点x
int hea[N], up[N], dnf[N], dnff[N], seq[N];
int len[N];
int tot;
void dfs(int x, int pa) {
son[x] = 1, dep[x] = dep[pa] + 1, fa[x] = pa;
int t = 0;
for (auto [y, val]: A[x]) {
if (y == pa) continue;
dis[y] = dis[x] + val;
dfs(y, x);
cmax(len[x], len[y] + 1);
son[x] += son[y];
if (!t or son[t] < son[y]) t = y;
}
hea[x] = t;
}
void dfs2(int x, int pa, int ding) {
dnf[x] = ++tot, up[x] = ding, seq[dnf[x]] = x;
if (hea[x]) dfs2(hea[x], x, ding);
for (auto [y, val]: A[x]) {
if (y == pa || y == hea[x]) continue;
dfs2(y, x, y);
}
dnff[x] = tot;
}
void clear(int n) {
tot = 0;
rep(i, 1, n) {
A[i].clear();
dis[i] = hea[i] = up[i] = dnf[i] = seq[i] = 0;
}
}
void add(int x, int y, int c = 1) {
A[x].push_back({y, c});
A[y].push_back({x, c});
}
int lca(int x, int y) {
while (up[x] != up[y]) {
if (dep[up[x]] < dep[up[y]]) swap(x, y);
x = fa[up[x]];
}
if (dep[x] > dep[y]) swap(x, y);
return x;
}
//返回x向上k次的点
int upup(int x, int k) {
if (dep[x] <= k) return -1;
int to = dep[x] - k;
while (dep[up[x]] > to) x = fa[up[x]];
return seq[dnf[x] - (dep[x] - to)];
}
int dist(int x, int y) { return dis[x] + dis[y] - dis[lca(x, y)] * 2; }
void work(int rt = 1) { dfs(rt, 0), dfs2(rt, 0, rt); }
//x的子树里有y就返回1
bool isFa(int x, int y) { return (dnf[x] <= dnf[y] and dnff[x] > dnf[y]); }
};
//--------------------------------------------------------------------------------
bool check(int mid) {
using namespace z;
int t = 0;
rep(i, 1, n) {
if (dep[i] < mid) continue;
if (len[i] == 0) continue;
if (t == 0) t = i;
if (isFa(t, i)) continue;
t = lca(t, i);
}
if (t == 0) return 1;
if (len[1] + 1 <= mid) return 1;
rep(i, 1, n) {
if (isFa(t, i) or isFa(i, t)) continue;
if (dep[i] >= mid) continue;
if (dep[t] + len[i] <= mid and dep[i] + len[t] <= mid) return 1;
}
return 0;
}
signed main() {
fileRead();
kuaidu();
T = 1;
//cin >> T;
while (T--) {
cin >> n;
z::clear(n);
rep(i, 1, n-1) {
int a, b;
cin >> a >> b;
z::add(a, b);
}
z::work();
int l = 0, r = n + 1;
while (l + 1 != r) {
int mid = l + r >> 1;
if (check(mid)) r = mid;
else l = mid;
}
cc(r);
}
return 0;
}
/*
*/