滑块验证码,滑块和有缺口的背景
突破滑动验证码有缺口的背景内容
import cv2 as cv
import numpy as np
import os
def find_p(img):
ret, thresh = cv.threshold(img, 127, 255, 0)
img = cv.cvtColor(img, cv.COLOR_GRAY2BGR)
contours, hierarchy = cv.findContours(thresh, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
# print(len(contours))
cnt = contours[0]
x, y, w, h = cv.boundingRect(cnt)
img = cv.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
# cv.imshow('7', img)
return x, y, w, h, thresh[y: y + h, x: x + w]
def tmp_match(img, tar):
w, h = tar.shape[0:-1]
# methods = ['cv.TM_CCOEFF', 'cv.TM_CCOEFF_NORMED', 'cv.TM_CCORR',
# 'cv.TM_CCORR_NORMED', 'cv.TM_SQDIFF', 'cv.TM_SQDIFF_NORMED']
method = cv.TM_CCOEFF_NORMED
# Apply template Matching
res = cv.matchTemplate(img, tar, method)
min_val, max_val, min_loc, max_loc = cv.minMaxLoc(res)
# If the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimum
top_left = max_loc
bottom_right = (top_left[0] + w, top_left[1] + h)
cv.rectangle(img, top_left, bottom_right, 255, 2)
# cv.imshow('5', img)
return top_left
def sub_img_op(pth, pth1):
img = cv.imread(pth, -1)
img_tar = cv.imread(pth1)
sub_img = img[:, :, 3]
img_o = cv.cvtColor(img, cv.COLOR_BGRA2BGR)
# sub_img = cv.cvtColor(sub_img, cv.GRAY2BGR)
# print(sub_img[50:70, :])
x, y, w, h, mask = find_p(sub_img)
white_img = np.ones([h, w, 3], dtype='uint8') * 255
# print(x, y, w, h)
img_tar_sub = img_tar[y: y + h, :, :]
img_o_sub = img_o[y: y + h, x: x + w, :]
res_img = cv.addWeighted(img_o_sub, 0.7, white_img, 0.3, 0)
# res_img = img_o_sub
top_left = tmp_match(img_tar_sub, res_img)
print(top_left[0])
# cv.imshow('1', img_o)
cv.imshow('2', img_tar_sub)
cv.imshow('3', res_img)
cv.waitKey()
cv.destroyAllWindows()
return top_left[0]
标签:tar,sub,img,top,验证码,缺口,TM,滑块,cv
From: https://blog.csdn.net/weixin_45014634/article/details/144448788