前情概要
斐波那契数列又称黄金分割数列,因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是数列 \(1\) , \(1\) , \(2\) , \(3\) , \(5\) , \(8\) , \(13\) , \(\cdots\),在数学上,斐波纳契数列以递归的方法定义 \(a_1=1\),\(a_2=1\),且满足 \(a_{n+1}\) \(=\) \(a_n\) \(+\) \(a_{n-1}\),\(n\) \(\geqslant\) \(2\);[1]
图象绘制
<iframe allowfullscreen="" frameborder="0" id="LTTP" onl oad='this.height=document.getElementById("LTTP").scrollWidth*0.75+"px"' src="https://www.desmos.com/calculator/e2ugvrf0j6" style="border: 1px solid #ccc" width="80%"></iframe> <iframe allowfullscreen="" frameborder="0" id="LTTP" onl oad='this.height=document.getElementById("LTTP").scrollWidth*0.75+"px"' src="https://www.desmos.com/calculator/fonztubzoa" style="border: 1px solid #ccc" width="80%"></iframe>通项公式
- 斐波那契数列 \(\{a_n\}\) 的递推关系式满足条件:\(a_n=\left\{\begin{array}{l}1,&n=1\\1,&n=2\\a_{n-1}+a_{n-2},&n\geq 3\end{array}\right.\),其通项公式如下:
\[a_n=\cfrac{1}{\sqrt{5}}\bigg[(\cfrac{1+\sqrt{5}}{2})^n-(\cfrac{1-\sqrt{5}}{2})^n\bigg] \]
详细求解过程,请参阅斐波那契数列通项公式的求解
斐波那契数列与黄金分割比
直接给结论:斐波那契数列相邻项比值的极限是 \(0.618\),意思就是随着斐波那契数列越来越大,相邻两项的比值越来越接近 \(0.618\),证明也非常简单,只要有大学高数的极限知识即可,
典例剖析
分析:本题目涉及到的数列为“斐波那契数列”,其构成规律为:\(a_1=1\),\(a_2=1\)已知,其他项由递推公式\(a_{n+2}\)\(=\)\(a_{n+1}\)\(+\)\(a_n\),\(n\in N^*\)得到,
故\(a_6=8\),\(a_7=13\),\(a_8=21\),\(a_9=34\),\(a_{10}=55\),\(a_{11}=89\),故选\(D\)。
解析: 因为 \(a_{1}\)\(=\)\(a_{2}\)\(=\)\(1\) ,所以
\(1\)\(+\)\(a_{3}\)\(+\)\(a_{5}\)\(+\)\(a_{7}\)\(+\)\(a_{9}\)\(+\)\(\cdots\)\(+\)\(a_{2021}\)
\(=\)\(a_{2}\)\(+\)\(a_{3}\)\(+\)\(a_{5}\)\(+\)\(a_{7}\)\(+\)\(a_{9}\)\(+\)\(\cdots\)\(+\)\(a_{2021}\)
\(=\)\(a_{4}\)\(+\)\(a_{5}\)\(+\)\(a_{7}\)\(+\)\(a_{9}\)\(+\)\(\cdots\)\(+\)\(a_{2021}\)
\(=\)\(a_{6}\)\(+\)\(a_{7}\)\(+\)\(a_{9}\)\(+\)\(\cdots\)\(+\)\(a_{2021}\)
\(=\)\(\cdots\)\(+\)\(a_{2019}\)\(+\)\(a_{2021}\)
\(=\)\(a_{2020}\)\(+\)\(a_{2021}\)\(=\)\(a_{2022}\) ,故选 \(C\) .
相关延申
函数的周期,\(f(x+2)=f(x+1)-f(x)\),求周期;