首页 > 其他分享 >常用代码模板4——数学知识

常用代码模板4——数学知识

时间:2024-11-18 17:19:33浏览次数:1  
标签:res 游戏 int luogu 代码 数学知识 SG 模板

算法基础课相关代码模板

 

试除法判定质数 —— 模板题 luogu 866. 试除法判定质数

bool is_prime(int x)
{
    if (x < 2) return false;
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
            return false;
    return true;
}

试除法分解质因数 —— 模板题 luogu 867. 分解质因数

void divide(int x)
{
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
        {
            int s = 0;
            while (x % i == 0) x /= i, s ++ ;
            cout << i << ' ' << s << endl;
        }
    if (x > 1) cout << x << ' ' << 1 << endl;
    cout << endl;
}

朴素筛法求素数 —— 模板题 luogu 868. 筛质数

int primes[N], cnt;     // primes[]存储所有素数
bool st[N];         // st[x]存储x是否被筛掉

void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (st[i]) continue;
        primes[cnt ++ ] = i;
        for (int j = i + i; j <= n; j += i)
            st[j] = true;
    }
}

线性筛法求素数 —— 模板题 luogu 868. 筛质数

int primes[N], cnt;     // primes[]存储所有素数
bool st[N];         // st[x]存储x是否被筛掉

void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]) primes[cnt ++ ] = i;
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    }
}

试除法求所有约数 —— 模板题 luogu 869. 试除法求约数

vector<int> get_divisors(int x)
{
    vector<int> res;
    for (int i = 1; i <= x / i; i ++ )
        if (x % i == 0)
        {
            res.push_back(i);
            if (i != x / i) res.push_back(x / i);
        }
    sort(res.begin(), res.end());
    return res;
}

约数个数和约数之和 —— 模板题 luogu 870. 约数个数, luogu 871. 约数之和

如果 N = p1^c1 * p2^c2 * ... *pk^ck
约数个数: (c1 + 1) * (c2 + 1) * ... * (ck + 1)
约数之和: (p1^0 + p1^1 + ... + p1^c1) * ... * (pk^0 + pk^1 + ... + pk^ck)

欧几里得算法 —— 模板题 luogu 872. 最大公约数

int gcd(int a, int b)
{
    return b ? gcd(b, a % b) : a;
}

求欧拉函数 —— 模板题 luogu 873. 欧拉函数

int phi(int x)
{
    int res = x;
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
        {
            res = res / i * (i - 1);
            while (x % i == 0) x /= i;
        }
    if (x > 1) res = res / x * (x - 1);

    return res;
}

筛法求欧拉函数 —— 模板题 luogu 874. 筛法求欧拉函数

int primes[N], cnt;     // primes[]存储所有素数
int euler[N];           // 存储每个数的欧拉函数
bool st[N];         // st[x]存储x是否被筛掉


void get_eulers(int n)
{
    euler[1] = 1;
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i])
        {
            primes[cnt ++ ] = i;
            euler[i] = i - 1;
        }
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            int t = primes[j] * i;
            st[t] = true;
            if (i % primes[j] == 0)
            {
                euler[t] = euler[i] * primes[j];
                break;
            }
            euler[t] = euler[i] * (primes[j] - 1);
        }
    }
}

快速幂 —— 模板题 luogu 875. 快速幂

求 m^k mod p,时间复杂度 O(logk)。

int qmi(int m, int k, int p)
{
    int res = 1 % p, t = m;
    while (k)
    {
        if (k&1) res = res * t % p;
        t = t * t % p;
        k >>= 1;
    }
    return res;
}

扩展欧几里得算法 —— 模板题 luogu 877. 扩展欧几里得算法

// 求x, y,使得ax + by = gcd(a, b)
int exgcd(int a, int b, int &x, int &y)
{
    if (!b)
    {
        x = 1; y = 0;
        return a;
    }
    int d = exgcd(b, a % b, y, x);
    y -= (a/b) * x;
    return d;
}

高斯消元 —— 模板题 luogu 883. 高斯消元解线性方程组

// a[N][N]是增广矩阵
int gauss()
{
    int c, r;
    for (c = 0, r = 0; c < n; c ++ )
    {
        int t = r;
        for (int i = r; i < n; i ++ )   // 找到绝对值最大的行
            if (fabs(a[i][c]) > fabs(a[t][c]))
                t = i;

        if (fabs(a[t][c]) < eps) continue;

        for (int i = c; i <= n; i ++ ) swap(a[t][i], a[r][i]);      // 将绝对值最大的行换到最顶端
        for (int i = n; i >= c; i -- ) a[r][i] /= a[r][c];      // 将当前行的首位变成1
        for (int i = r + 1; i < n; i ++ )       // 用当前行将下面所有的列消成0
            if (fabs(a[i][c]) > eps)
                for (int j = n; j >= c; j -- )
                    a[i][j] -= a[r][j] * a[i][c];

        r ++ ;
    }

    if (r < n)
    {
        for (int i = r; i < n; i ++ )
            if (fabs(a[i][n]) > eps)
                return 2; // 无解
        return 1; // 有无穷多组解
    }

    for (int i = n - 1; i >= 0; i -- )
        for (int j = i + 1; j < n; j ++ )
            a[i][n] -= a[i][j] * a[j][n];

    return 0; // 有唯一解
}

递推法求组合数 —— 模板题 luogu 885. 求组合数 I

// c[a][b] 表示从a个苹果中选b个的方案数
for (int i = 0; i < N; i ++ )
    for (int j = 0; j <= i; j ++ )
        if (!j) c[i][j] = 1;
        else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;

通过预处理逆元的方式求组合数 —— 模板题 luogu 886. 求组合数 II

首先预处理出所有阶乘取模的余数fact[N],以及所有阶乘取模的逆元infact[N]
如果取模的数是质数,可以用费马小定理求逆元
int qmi(int a, int k, int p)    // 快速幂模板
{
    int res = 1;
    while (k)
    {
        if (k & 1) res = (LL)res * a % p;
        a = (LL)a * a % p;
        k >>= 1;
    }
    return res;
}

// 预处理阶乘的余数和阶乘逆元的余数
fact[0] = infact[0] = 1;
for (int i = 1; i < N; i ++ )
{
    fact[i] = (LL)fact[i - 1] * i % mod;
    infact[i] = (LL)infact[i - 1] * qmi(i, mod - 2, mod) % mod;
}

Lucas定理 —— 模板题 luogu 887. 求组合数 III

若p是质数,则对于任意整数 1 <= m <= n,有:
    C(n, m) = C(n % p, m % p) * C(n / p, m / p) (mod p)

int qmi(int a, int k, int p)  // 快速幂模板
{
    int res = 1 % p;
    while (k)
    {
        if (k & 1) res = (LL)res * a % p;
        a = (LL)a * a % p;
        k >>= 1;
    }
    return res;
}

int C(int a, int b, int p)  // 通过定理求组合数C(a, b)
{
    if (a < b) return 0;

    LL x = 1, y = 1;  // x是分子,y是分母
    for (int i = a, j = 1; j <= b; i --, j ++ )
    {
        x = (LL)x * i % p;
        y = (LL) y * j % p;
    }

    return x * (LL)qmi(y, p - 2, p) % p;
}

int lucas(LL a, LL b, int p)
{
    if (a < p && b < p) return C(a, b, p);
    return (LL)C(a % p, b % p, p) * lucas(a / p, b / p, p) % p;
}

分解质因数法求组合数 —— 模板题 luogu 888. 求组合数 IV

当我们需要求出组合数的真实值,而非对某个数的余数时,分解质因数的方式比较好用:
    1. 筛法求出范围内的所有质数
    2. 通过 C(a, b) = a! / b! / (a - b)! 这个公式求出每个质因子的次数。 n! 中p的次数是 n / p + n / p^2 + n / p^3 + ...
    3. 用高精度乘法将所有质因子相乘

int primes[N], cnt;     // 存储所有质数
int sum[N];     // 存储每个质数的次数
bool st[N];     // 存储每个数是否已被筛掉


void get_primes(int n)      // 线性筛法求素数
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]) primes[cnt ++ ] = i;
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    }
}


int get(int n, int p)       // 求n!中的次数
{
    int res = 0;
    while (n)
    {
        res += n / p;
        n /= p;
    }
    return res;
}


vector<int> mul(vector<int> a, int b)       // 高精度乘低精度模板
{
    vector<int> c;
    int t = 0;
    for (int i = 0; i < a.size(); i ++ )
    {
        t += a[i] * b;
        c.push_back(t % 10);
        t /= 10;
    }

    while (t)
    {
        c.push_back(t % 10);
        t /= 10;
    }

    return c;
}

get_primes(a);  // 预处理范围内的所有质数

for (int i = 0; i < cnt; i ++ )     // 求每个质因数的次数
{
    int p = primes[i];
    sum[i] = get(a, p) - get(b, p) - get(a - b, p);
}

vector<int> res;
res.push_back(1);

for (int i = 0; i < cnt; i ++ )     // 用高精度乘法将所有质因子相乘
    for (int j = 0; j < sum[i]; j ++ )
        res = mul(res, primes[i]);

卡特兰数 —— 模板题 luogu 889. 满足条件的01序列

给定n个0和n个1,它们按照某种顺序排成长度为2n的序列,满足任意前缀中0的个数都不少于1的个数的序列的数量为: Cat(n) = C(2n, n) / (n + 1)

NIM游戏 —— 模板题 luogu 891. Nim游戏

给定N堆物品,第i堆物品有Ai个。两名玩家轮流行动,每次可以任选一堆,取走任意多个物品,可把一堆取光,但不能不取。取走最后一件物品者获胜。两人都采取最优策略,问先手是否必胜。

我们把这种游戏称为NIM博弈。把游戏过程中面临的状态称为局面。整局游戏第一个行动的称为先手,第二个行动的称为后手。若在某一局面下无论采取何种行动,都会输掉游戏,则称该局面必败。
所谓采取最优策略是指,若在某一局面下存在某种行动,使得行动后对面面临必败局面,则优先采取该行动。同时,这样的局面被称为必胜。我们讨论的博弈问题一般都只考虑理想情况,即两人均无失误,都采取最优策略行动时游戏的结果。
NIM博弈不存在平局,只有先手必胜和先手必败两种情况。

定理: NIM博弈先手必胜,当且仅当 A1 ^ A2 ^ … ^ An != 0


公平组合游戏ICG

若一个游戏满足:

  1. 由两名玩家交替行动;
  2. 在游戏进程的任意时刻,可以执行的合法行动与轮到哪名玩家无关;
  3. 不能行动的玩家判负;

则称该游戏为一个公平组合游戏。
NIM博弈属于公平组合游戏,但城建的棋类游戏,比如围棋,就不是公平组合游戏。因为围棋交战双方分别只能落黑子和白子,胜负判定也比较复杂,不满足条件2和条件3。


有向图游戏

给定一个有向无环图,图中有一个唯一的起点,在起点上放有一枚棋子。两名玩家交替地把这枚棋子沿有向边进行移动,每次可以移动一步,无法移动者判负。该游戏被称为有向图游戏。
任何一个公平组合游戏都可以转化为有向图游戏。具体方法是,把每个局面看成图中的一个节点,并且从每个局面向沿着合法行动能够到达的下一个局面连有向边。


Mex运算

设S表示一个非负整数集合。定义mex(S)为求出不属于集合S的最小非负整数的运算,即:
mex(S) = min{x}, x属于自然数,且x不属于S


SG函数

在有向图游戏中,对于每个节点x,设从x出发共有k条有向边,分别到达节点y1, y2, …, yk,定义SG(x)为x的后继节点y1, y2, …, yk 的SG函数值构成的集合再执行mex(S)运算的结果,即:
SG(x) = mex({SG(y1), SG(y2), …, SG(yk)})
特别地,整个有向图游戏G的SG函数值被定义为有向图游戏起点s的SG函数值,即SG(G) = SG(s)。


有向图游戏的和 —— 模板题 luogu 893. 集合-Nim游戏

设G1, G2, …, Gm 是m个有向图游戏。定义有向图游戏G,它的行动规则是任选某个有向图游戏Gi,并在Gi上行动一步。G被称为有向图游戏G1, G2, …, Gm的和。
有向图游戏的和的SG函数值等于它包含的各个子游戏SG函数值的异或和,即:
SG(G) = SG(G1) ^ SG(G2) ^ … ^ SG(Gm)


定理

有向图游戏的某个局面必胜,当且仅当该局面对应节点的SG函数值大于0。
有向图游戏的某个局面必败,当且仅当该局面对应节点的SG函数值等于0。

标签:res,游戏,int,luogu,代码,数学知识,SG,模板
From: https://www.cnblogs.com/kkman2000/p/18553197

相关文章

  • 常用代码模板1——基础算法
    算法基础课相关代码模板活动链接——算法基础课快速排序算法模板——模板题luogu785.快速排序voidquick_sort(intq[],intl,intr){if(l>=r)return;inti=l-1,j=r+1,x=q[l+r>>1];while(i<j){doi++;wh......
  • 常用代码模板2——数据结构
    单链表——模板题luogu826.单链表//head存储链表头,e[]存储节点的值,ne[]存储节点的next指针,idx表示当前用到了哪个节点inthead,e[N],ne[N],idx;//初始化voidinit(){  head=-1;  idx=0;}//在链表头插入一个数avoidinsert(inta){  e[idx]=a,ne[i......
  • 常用代码模板3——搜索与图论
    算法基础课相关代码模板 树与图的存储树是一种特殊的图,与图的存储方式相同。对于无向图中的边ab,存储两条有向边a->b,b->a。因此我们可以只考虑有向图的存储。(1)邻接矩阵:g[a][b]存储边a->b(2)邻接表://对于每个点k,开一个单链表,存储k所有可以走到的点。h[k]存储这个单链......
  • 修改IDEA中Servlet创建的模板
    一、原Servlet模板创建出来的格式样式二、按图步骤修改注释参数1.点击File->选择Settings,按下图步骤进入设置项。修改前的模板样式2.修改类创建时的默认方法三、重新创建Servlet时,新模板样式......
  • 代码随想录算法训练营第六天|哈希表|LC242. 有效的字母异位词|LC349. 两个数组的交集|
    哈希表    哈希表:用来快速判断一个元素是否出现在集合里;O(1);    哈希碰撞:比如小王和小李都映射到索引下表1的位置,有2中解决办法(拉链法和线性探测法);    拉链发:通过索引找到,其实拉链发就是要选择适当的哈希表的大小,这样既不会因为数组空值而浪费大量内......
  • YOLOv7-0.1部分代码阅读笔记-detect.py
    detect.pydetect.py目录detect.py1.所需的库和模块2.defdetect(save_img=False): 3.if__name__=='__main__': 1.所需的库和模块importargparseimporttimefrompathlibimportPathimportcv2importtorchimporttorch.backends.cudnnascudnnfromnu......
  • YOLOv7-0.1部分代码阅读笔记-train.py
    train.pytrain.py目录train.py1.所需的库和模块2.deftrain(hyp,opt,device,tb_writer=None): 3.if__name__=='__main__': 1.所需的库和模块importargparseimportloggingimportmathimportosimportrandomimporttimefromcopyimportdeepcopyfro......
  • 代码随想录算法训练营第四天|LC24.两两交换链表中的节点|LC19. 删除链表的倒数第 N 个
    24.两两交换链表中的节点-力扣(LeetCode)    1、需要一个虚拟节点进行帮助;    2、注意虚拟节点的连接以及变化(尝试有点困惑它的变化,后面有点理解);    3、注意后续第二组的交换时如何与第一组交换进行连接;fromtypingimportOptionalclassLis......
  • 寻找 2300 名编程青铜一起写代码,学会就送包!
    编程不仅仅是技术的积累,更是一种思维方式的转变。身边越来越多朋友已经意识到,学会一门编程语言,就好像掌握了新的国际通用语言,享受学习交流世界最前沿知识、思想的快乐。但你是不是也一样,每次下定决心学编程,结果一看到密密麻麻的代码,立刻失去斗志。其实有了通义灵码这样的编程助手......
  • 寻找 2300 名编程青铜一起写代码,学会就送包!
    编程不仅仅是技术的积累,更是一种思维方式的转变。身边越来越多朋友已经意识到,学会一门编程语言,就好像掌握了新的国际通用语言,享受学习交流世界最前沿知识、思想的快乐。但你是不是也一样,每次下定决心学编程,结果一看到密密麻麻的代码,立刻失去斗志。其实有了通义灵码这样的编程助手......