首页 > 其他分享 >实现一个简单Database6

实现一个简单Database6

时间:2022-10-30 15:55:13浏览次数:74  
标签:Cursor 实现 游标 cursor Database6 num 简单 table row

  • GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源。
  • GreatSQL是MySQL的国产分支版本,使用上与MySQL一致。

前文回顾

实现一个简单的Database1(译文)

实现一个简单的Database2(译文)

实现一个简单的Database3(译文)

实现一个简单的Database4(译文)

实现一个简单的Database5(译文)


译注:cstsck在github维护了一个简单的、类似sqlite的数据库实现,通过这个简单的项目,可以很好的理解数据库是如何运行的。本文是第六篇,主要是实现数据持久化游标

Part 6 游标抽象

跟上一节相比,这一节篇幅相对要简短的多。我们只是稍微重构一下,这样就可以让开始实现B-tree更简单一些。

在代码中新添加一个Cursor对象,它用来代表表中的一个位置(location)。

你可能希望对游标执行的操作:

  • 在表开头时创建一个游标
  • 在表结尾时创建一个游标
  • 访问游标指向的行
  • 将游标移动到下一行

这就是我们将要实现的游标的一些行为。然后,我们还想做到:

  • 删除游标指向的一行数据
  • 修改游标指向的一行数据
  • 使用给定的ID搜索一张表,并创建一个游标指向这个ID所在的行

_译注:这里简单介绍一下游标,Cursor原本就有箭头、光标的意思,用来指示事物以示关注。游标是数据的一种访问机制,一种处理数据的方法,例如查询返回的结果是一行或者多行的结果集(这已经是SQL被处理后的结果集),我们需要对结果集进行查询,sql语句就不管用了,因为这已经是返回的结果集了,这个时候就需要用游标来遍历这个返回的结果集了。可以理解游标是一个指向Row的指针,访问一行后,游标就会指向下一行。例如 fetchone()、fetchall() 等函数就是通过游标来访问结果集的,返回具体一行或者多行的数据。下面是游标图示:

image-20221030153346199

不磨叽了,下面就是Cursor类型结构:

+typedef struct {
+  Table* table;
+  uint32_t row_num;
+  bool end_of_table;  // Indicates a position one past the last element
+} Cursor;

根据现在我们的表数据结构,只需要行号即可识别表中的位置。

游标对它所属的表还有一个引用(所以我们的游标函数还可以仅仅把游标作为参数)。

最后,它还有一个boolean类型的属性叫做 end_of_table 。这样我们就可以用来表示表结尾之后的位置(在这里我们可能会插入一个新行)。

table_start() 和 table_end() 创建一个新的游标:

+Cursor* table_start(Table* table) {
+  Cursor* cursor = malloc(sizeof(Cursor));
+  cursor->table = table;
+  cursor->row_num = 0;
+  cursor->end_of_table = (table->num_rows == 0);
+
+  return cursor;
+}
+
+Cursor* table_end(Table* table) {
+  Cursor* cursor = malloc(sizeof(Cursor));
+  cursor->table = table;
+  cursor->row_num = table->num_rows;
+  cursor->end_of_table = true;
+
+  return cursor;
+}

我们的 row_slot() 函数要变成 cursor_value() 了,它返回一个指针类型,指向游标描述的位置:

-void* row_slot(Table* table, uint32_t row_num) {
+void* cursor_value(Cursor* cursor) {
+  uint32_t row_num = cursor->row_num;
   uint32_t page_num = row_num / ROWS_PER_PAGE;
-  void* page = get_page(table->pager, page_num);
+  void* page = get_page(cursor->table->pager, page_num);
   uint32_t row_offset = row_num % ROWS_PER_PAGE;
   uint32_t byte_offset = row_offset * ROW_SIZE;
   return page + byte_offset;
 }

在我们当前的表结构中推进游标就像让行号递增一样简单。这在B-tree书中会有一点小复杂。

+void cursor_advance(Cursor* cursor) {
+  cursor->row_num += 1;
+  if (cursor->row_num >= cursor->table->num_rows) {
+    cursor->end_of_table = true;
+  }
+}  

最后我们就能改变我们的“虚拟机”方法来使用游标抽象了。当插入一行数据时,我们在表结尾打开一个游标,写入这个游标的位置,然后关闭游标。

Row* row_to_insert = &(statement->row_to_insert);
+  Cursor* cursor = table_end(table);

-  serialize_row(row_to_insert, row_slot(table, table->num_rows));
+  serialize_row(row_to_insert, cursor_value(cursor));
table->num_rows += 1;

+  free(cursor);
+
return EXECUTE_SUCCESS;
}

当查询表中的所有行时,我们在表的开头打开一个游标,打印行数据,然后推进游标到下一行,重复这个过程直到表的结尾。

 ExecuteResult execute_select(Statement* statement, Table* table) {
+  Cursor* cursor = table_start(table);
+
   Row row;
-  for (uint32_t i = 0; i < table->num_rows; i++) {
-    deserialize_row(row_slot(table, i), &row);
+  while (!(cursor->end_of_table)) {
+    deserialize_row(cursor_value(cursor), &row);
     print_row(&row);
+    cursor_advance(cursor);
   }
+
+  free(cursor);
+
   return EXECUTE_SUCCESS;
 }

好了,就是它!就像我说的,这是短小的重构,应该能够有助于我们把表的数据结构重写为B-tree。execute_select() 和 execute_insert() 函数完全可以通过游标来与表交互,而对于表的存储方式不需要假设任何事情。

译注:在之前实现数据库的page组织方式的代码中,作者使用数组(array)来组织数据页page,主要是考虑快速实现存放数据,没有考虑性能优化。后面会使用B-tree来进行重构,而在此之前,先实现了游标。_

这是于上一部分对比,代码的不同:

@@ -78,6 +78,13 @@ struct {
 } Table;

+typedef struct {
+  Table* table;
+  uint32_t row_num;
+  bool end_of_table; // Indicates a position one past the last element
+} Cursor;
+
 void print_row(Row* row) {
     printf("(%d, %s, %s)\n", row->id, row->username, row->email);
 }
@@ -126,12 +133,38 @@ void* get_page(Pager* pager, uint32_t page_num) {
     return pager->pages[page_num];
 }

-void* row_slot(Table* table, uint32_t row_num) {
-  uint32_t page_num = row_num / ROWS_PER_PAGE;
-  void *page = get_page(table->pager, page_num);
-  uint32_t row_offset = row_num % ROWS_PER_PAGE;
-  uint32_t byte_offset = row_offset * ROW_SIZE;
-  return page + byte_offset;
+Cursor* table_start(Table* table) {
+  Cursor* cursor = malloc(sizeof(Cursor));
+  cursor->table = table;
+  cursor->row_num = 0;
+  cursor->end_of_table = (table->num_rows == 0);
+
+  return cursor;
+}
+
+Cursor* table_end(Table* table) {
+  Cursor* cursor = malloc(sizeof(Cursor));
+  cursor->table = table;
+  cursor->row_num = table->num_rows;
+  cursor->end_of_table = true;
+
+  return cursor;
+}
+
+void* cursor_value(Cursor* cursor) {
+  uint32_t row_num = cursor->row_num;
+  uint32_t page_num = row_num / ROWS_PER_PAGE;
+  void *page = get_page(cursor->table->pager, page_num);
+  uint32_t row_offset = row_num % ROWS_PER_PAGE;
+  uint32_t byte_offset = row_offset * ROW_SIZE;
+  return page + byte_offset;
+}
+
+void cursor_advance(Cursor* cursor) {
+  cursor->row_num += 1;
+  if (cursor->row_num >= cursor->table->num_rows) {
+    cursor->end_of_table = true;
+  }
 }

 Pager* pager_open(const char* filename) {
@@ -327,19 +360,28 @@ ExecuteResult execute_insert(Statement* statement, Table* table) {
     }

   Row* row_to_insert = &(statement->row_to_insert);
+  Cursor* cursor = table_end(table);

-  serialize_row(row_to_insert, row_slot(table, table->num_rows));
+  serialize_row(row_to_insert, cursor_value(cursor));
   table->num_rows += 1;

+  free(cursor);
+
   return EXECUTE_SUCCESS;
 }

 ExecuteResult execute_select(Statement* statement, Table* table) {
+  Cursor* cursor = table_start(table);
+
   Row row;
-  for (uint32_t i = 0; i < table->num_rows; i++) {
-     deserialize_row(row_slot(table, i), &row);
+  while (!(cursor->end_of_table)) {
+     deserialize_row(cursor_value(cursor), &row);
      print_row(&row);
+     cursor_advance(cursor);
   }
+
+  free(cursor);
+
   return EXECUTE_SUCCESS;
 }

Enjoy GreatSQL

标签:Cursor,实现,游标,cursor,Database6,num,简单,table,row
From: https://www.cnblogs.com/greatsql/p/16841446.html

相关文章

  • Go 容器之队列的几种实现方式
    1队列的概念队列是有序集合,遵循FIFO(Firstinfirstout,即先进先出)排队方法的容器。添加操作发生在队列的尾部,移除操作则发生在头部。新元素从尾部进入队列,然后一直向前移......
  • 数据结构 玩转数据结构 4-6 使用链表实现栈
    0课程地址https://coding.imooc.com/lesson/207.html#mid=13449 1重点关注1.1使用链表实现栈代码解析见3.1  2课程内容3......
  • WPF里ItemsControl的分组实现
    一、WPF里ItemsControl的分组实现我们在用到ItemsControl时,有时会用到分组。如下图所示,绑定一个普通一个数组如下所示:数据类型为:publicclassStudent{......
  • 简单登录联练习
    importjava.util.Scanner;publicclassEext{ publicstaticvoidmain(String[]args){//实现登录验证,有三次机会,如果用户名为亚托克斯密码为777提示登录成......
  • Redis实现分布式缓存
    单机的Redis存在四大问题:数据丢失、并发能力弱、故障恢复问题、存储能力1、Redis持久化(解决数据丢失问题)有两种持久化方案:RDB/AOF★RDB(数据备份文件):把内存......
  • 小样本利器4. 正则化+数据增强 Mixup Family代码实现
    前三章我们陆续介绍了半监督和对抗训练的方案来提高模型在样本外的泛化能力,这一章我们介绍一种嵌入模型的数据增强方案。之前没太重视这种方案,实在是方法过于朴实。。。不......
  • 使用HTML+CSS实现网页loading加载效果,支持定时或加载完成后隐藏
    网页使用loading可以给用户带来更好的体验,避免网页渲染中长时间出现网页整体空白从而影响访客的体验,loading在部分大型APP也有在应用。下面使用HTML+CSS+JS实现完整的Loadin......
  • 使用HTML+CSS实现网页loading加载效果,支持定时或加载完成后隐藏
    网页使用loading可以给用户带来更好的体验,避免网页渲染中长时间出现网页整体空白从而影响访客的体验,loading在部分大型APP也有在应用。下面使用HTML+CSS+JS实现完整的Loa......
  • 【现代简约风格装修案例】诠释不一样的简单 !
    在设计行业中“简约”无处不在,无不显示它巨大的影响力和感染力。简约必然是将具象的元素进行概括,是高度抽象,更适合人们展开想象的翅膀。而抽象的简约之美,最时尚的也是最简约......
  • swal 的简单使用例子
    swal的简单使用例子​​swal​​询问弹窗$(".comments.commentDel").on('click',function(){swal({title:"提示",text:"确定要删除该评论吗?",......