C. Chi, X. Zhang, J. Liu, Y. Sun, Z. Zhang and X. Zhan, "GICI-LIB: A GNSS/INS/Camera Integrated Navigation Library," in IEEE Robotics and Automation Letters, vol. 8, no. 12, pp. 7970-7977, Dec. 2023, doi: 10.1109/LRA.2023.3324825.
-
G. Huang, "Visual-inertial navigation: A concise review", Proc. IEEE Int. Conf. Robot. Automat., pp. 9572-9582, 2019. [Sh.Liu:自动驾驶机器人越来越普及]
-
C. Cadena et al., "Past present and future of simultaneous localization and mapping: Toward the robust-perception age", IEEE Trans. Robot., vol. 32, no. 6, pp. 1309-1332, Dec. 2016. [Sh.Liu:Visual-Inertial Navigation System (VINS)]
-
J. Janai et al., "Computer vision for autonomous vehicles: Problems datasets and state of the art", Found. Trends Comput. Graph. Vis., vol. 12, no. 1–3, pp. 1-308, 2020.
-
S. Cao, X. Lu and S. Shen, "GVINS: Tightly coupled GNSS–visual-inertial fusion for smooth and consistent state estimation", IEEE Trans. Robot., vol. 38, no. 4, pp. 2004-2021, Aug. 2022.[Sh.Liu:GVINS]
[Sh.Liu:4,6,7,8: GVINS] -
"White paper on the development of China's satellite navigation and location services industry", Oct. 2022, [online] Available: http://www.glac.org.cn/index.php?m=content&c=index&a=lists&catid=17.
-
X. Niu, H. Tang, T. Zhang, J. Fan and J. Liu, "IC-GVINS: A robust real-time INS-centric GNSS-visual-inertial navigation system", IEEE Robot. Automat. Lett., vol. 8, no. 1, pp. 216-223, Jan. 2023.
-
J. Liu, W. Gao and Z. Hu, "Optimization-based visual-inertial SLAM tightly coupled with raw GNSS measurements", Proc. IEEE Int. Conf. Robot. Automat., pp. 11612-11618, 2021.
-
T. Li, L. Pei, Y. Xiang, W. Yu and T.-K. Truong, " P ${}^{3}$ -VINS: Tightly-coupled PPP/INS/visual SLAM based on optimization approach ", IEEE Robot. Automat. Lett., vol. 7, no. 3, pp. 7021-7027, Jul. 2022.
-
N. Sünderhauf and P. Protzel, "Towards robust graphical models for GNSS-based localization in urban environments", Proc. Int. Multi- Conf. Syst. Signals Devices, pp. 1-6, 2012.
[Sh.Liu:9 10 11 12 13 14 15 16 6 7 4 8表一汇总方法] -
W. Wen and L.-T. Hsu, "Towards robust GNSS positioning and real-time kinematic using factor graph optimization", Proc. IEEE Int. Conf. Robot. Automat., pp. 5884-5890, 2021.
-
H. Gao, H. Li, H. Huo and C. Yang, "Robust GNSS real-time kinematic with ambiguity resolution in factor graph optimization", Proc. Int. Tech. Meeting Inst. Navigation, pp. 835-843, 2022.
-
H. Tang, T. Zhang, X. Niu, J. Fan and J. Liu, "Impact of the Earth rotation compensation on MEMS-IMU preintegration of factor graph optimization", IEEE Sensors J., vol. 22, no. 17, pp. 17194-17204, Sep. 2022.
-
W. Li, X. Cui and M. Lu, "A robust graph optimization realization of tightly coupled GNSS/INS integrated navigation system for urban vehicles", Tsinghua Sci. Technol., vol. 23, no. 6, pp. 724-732, 2018.
-
W. Wen, T. Pfeifer, X. Bai and L.-T. Hsu, "Factor graph optimization for GNSS/INS integration: A comparison with the extended kalman filter", Navigation, vol. 68, no. 2, pp. 315-331, 2021.
-
T. Qin, S. Cao, J. Pan and S. Shen, "A general optimization-based framework for global pose estimation with multiple sensors", 2019.
-
R. Mascaro, L. Teixeira, T. Hinzmann, R. Siegwart and M. Chli, "GOMSF: Graph-optimization based multi-sensor fusion for robust UAV pose estimation", Proc. IEEE Int. Conf. Robot. Automat., pp. 1421-1428, 2018.
-
A. I. Mourikis and S. I. Roumeliotis, "A multi-state constraint Kalman filter for vision-aided inertial navigation", Proc. IEEE Int. Conf. Robot. Automat., pp. 3565-3572, 2007.
-
M. Li and A. I. Mourikis, "High-precision consistent EKF-based visual-inertial odometry", Int. J. Robot. Res., vol. 32, no. 6, pp. 690-711, 2013.
[Sh.Liu:Unlike GNSS, the state estimation problem for visual navigation can be categorized as either filter-based methods [17], [18] or optimization-based methods [19], [20], [21].] -
S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart and P. Furgale, "Keyframe-based visual–inertial odometry using nonlinear optimization", Int. J. Robot. Res., vol. 34, no. 3, pp. 314-334, 2015.
-
C. Forster, Z. Zhang, M. Gassner, M. Werlberger and D. Scaramuzza, "SVO: Semidirect visual odometry for monocular and multicamera systems", IEEE Trans. Robot., vol. 33, no. 2, pp. 249-265, Apr. 2017.
-
T. Qin, P. Li and S. Shen, "VINS-Mono: A robust and versatile monocular visual-inertial state estimator", IEEE Trans. Robot., vol. 34, no. 4, pp. 1004-1020, Aug. 2018.
-
S. Agarwal, K. Mierle and T. C. S. Team, "Ceres solver", 2022, [online] Available: https://github.com/ceres-solver/ceres-solver. [Sh.Liu:Ceres Solver [22] for solving such LSQ problem]
-
T. Takasu and A. Yasuda, "Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB", Proc. Int. Symp. GPS/GNSS, vol. 1, pp. 1-6, 2009.
-
X. W. Chang, X. Yang and T. Zhou, "MLAMBDA: A modified LAMBDA method for integer least-squares estimation", J. Geodesy, vol. 79, pp. 552-565, 2005.[Sh.Liu:MLAMBDA [24] algorithm to solve integer ambiguities]
-
L.-T. Hsu et al., "Hong Kong UrbanNav: An open-source multisensory dataset for benchmarking urban navigation algorithms", Navigation, vol. 70, no. 4, 2023, [online] Available: https://navi.ion.org/content/70/4/navi.602.abstract.