paper
通过密集连接的小卷积核实现细节特征(高频特征提取)提取
import torch.nn as nn
class Dense(nn.Module):
def __init__(self, in_channels):
super(Dense, self).__init__()
# self.norm = nn.LayerNorm([in_channels, 128, 128]) # Assuming input size is [224, 224]
self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1,stride=1)
self.conv2 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1,stride=1)
self.conv3 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1,stride=1)
self.conv4 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1,stride=1)
self.conv5 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1,stride=1)
self.conv6 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, stride=1)
self.gelu = nn.GELU()
def forward(self, x):
x1 = self.conv1(x)
x1 = self.gelu(x1+x)
x2 = self.conv2(x1)
x2 = self.gelu(x2+x1+x)
x3 = self.conv3(x2)
x3 = self.gelu(x3+x2+x1+x)
x4 = self.conv4(x3)
x4 = self.gelu(x4+x3+x2+x1+x)
x5 = self.conv5(x4)
x5 = self.gelu(x5+x4+x3+x2+x1+x)
x6= self.conv6(x5)
x6 = self.gelu(x6+x5+x4+x3+x2+x1+x)
return x6
标签:channels,nn,Image,High,Restoration,x2,x1,self,size
From: https://www.cnblogs.com/plumIce/p/18541269