首页 > 其他分享 >Lift, Splat, Shoot, LSS代码详尽分析与解读

Lift, Splat, Shoot, LSS代码详尽分析与解读

时间:2024-11-11 21:21:09浏览次数:1  
标签:Shoot 200 10 self Lift geom LSS 64 feats

LSS是英伟达在ECCV2020上发表的文章《Lift, Splat, Shoot: Encoding Images from Arbitrary Camera Rigs by Implicitly Unprojecting to 3D》中提出的一个BEV感知算法,后续很多BEV感知算法如CaDDN、BEVDet都是在LSS的基础上实现的。本文将结合论文和代码详细解读LSS的原理。鸟瞰图BEV("bird's-eye-view")自动驾驶BEV感知范式的开山之作!
github:https://github.com/nv-tlabs/lift-splat-shoot
paper:https://arxiv.org/abs/2008.05711

数据层:

class SegmentationData(NuscData):
    def __init__(self, *args, **kwargs):
        super(SegmentationData, self).__init__(*args, **kwargs)
    
    def __getitem__(self, index):
        index = 16  #55(nice) #25
        rec = self.ixes[index]
        #从6个摄像头随机取5个
        cams = self.choose_cams()  #['CAM_FRONT_LEFT' 'CAM_FRONT_RIGHT' 'CAM_BACK_LEFT' 'CAM_BACK', 'CAM_BACK_RIGHT']
        #imgs [5, 3, 128, 352]
        #rots [5, 3, 3]
        #trans [5, 3]
        #intrins [5, 3, 3]
        #post_rots[5, 3, 3]
        #post_trans[5, 3]
        imgs, rots, trans, intrins, post_rots, post_trans = self.get_image_data(rec, cams)
        binimg = self.get_binimg(rec) #[1, 200, 200]
        
        return imgs, rots, trans, intrins, post_rots, post_trans, binimg
def img_transform(img, post_rot, post_tran,
                  resize, resize_dims, crop,
                  flip, rotate):
    # adjust image   #[1600,900]  -->> [354, 199]
    img = img.resize(resize_dims)
    img = img.crop(crop) #[354, 199]  -->> [352, 128]
    if flip:
        img = img.transpose(method=Image.FLIP_LEFT_RIGHT)
    img = img.rotate(rotate)
                                    #post_rot      [1, 0]
    # post-homography transformation               [0, 1]
    post_rot *= resize
    post_tran -= torch.Tensor(crop[:2])   #[0, 0]
    if flip:
        A = torch.Tensor([[-1, 0], [0, 1]])
        b = torch.Tensor([crop[2] - crop[0], 0])
        post_rot = A.matmul(post_rot)
        post_tran = A.matmul(post_tran) + b
    A = get_rot(rotate/180*np.pi) #[2, 2]
    b = torch.Tensor([crop[2] - crop[0], crop[3] - crop[1]]) / 2
    b = A.matmul(-b) + b
    post_rot = A.matmul(post_rot)
    post_tran = A.matmul(post_tran) + b

    return img, post_rot, post_tran

https://zhuanlan.zhihu.com/p/608931944

这个链接讲解的比较好,转自该链接

img_transform这个函数主要是随机crop图像的,它是先resize再crop,还有flip、rot操作,同时记录了这些操作的矩阵post_rot、post_tran,为了后续点还原到原图。

def get_binimg(self, rec):
​        egopose = self.nusc.get('ego_pose',
​                                self.nusc.get('sample_data', rec['data']['LIDAR_TOP'])['ego_pose_token'])
​        #egopose    "translation"     "rotation"存放的是全局坐标系,      
​        trans = -np.array(egopose['translation']) #取负,是由全局转自车
​        rot = Quaternion(egopose['rotation']).inverse   #取逆,是由全局转自车
​        img = np.zeros((self.nx[0], self.nx[1])) #[200, 200]
​        #cv2.circle(img, (self.nx[0]//2,self.nx[1]//2),2,1,2)   #用圆点画出自车位置,方便观察
​        for tok in rec['anns']:
​            inst = self.nusc.get('sample_annotation', tok)
​            # add category for lyft
​            if not inst['category_name'].split('.')[0] == 'vehicle':
​                continue
​            box = Box(inst['translation'], inst['size'], Quaternion(inst['rotation']))
			#调用nuscene给的方法(nuscenes/utils/data_classes.py)
​            box.translate(trans)  #self.center += x
​            box.rotate(rot)  #转到自车坐标系
​            pts = box.bottom_corners()[:2].T #8个角点取下面4个点,注意是在自车坐标系下
​            #self.bx[-49.75, -49.75, 0]   self.dx[0.5, 0.5, 20]
​            #这里- self.bx[:2] + self.dx[:2]/2.是[50, 50]
​            #意思是把坐标系挪到右下角
​            pts = np.round(
​                (pts - self.bx[:2] + self.dx[:2]/2.) / self.dx[:2]
​                ).astype(np.int32)
​            pts[:, [1, 0]] = pts[:, [0, 1]] #坐标系xy对换,图3
​            cv2.fillPoly(img, [pts], 1.0)#由于img是200*200, 所以pts超过200的自然就不会画在图上
​    
​          # cv2.imshow("img", img)
​          # cv2.waitKey(0)
​    
        return torch.Tensor(img).unsqueeze(0)

以上代码的坐标系如图变化,其实xy坐标系对换之后就是图像坐标系了,可以直接画图,只是它原点在右下角,我们把原点转到左上角就是图像坐标系。这个时候原本的自车坐标系在图像上面显示是向下的。

可视化训练的时候5张图构成的这里的binimg二值图像.



可见,这里有个问题就是图像上面不可见的目标,这里没有过滤就显示作为gt二值图了。圆点是自车位置这里是为了观察自车位置所在点,实际gt的二值图是没有的。可以看到自车往前走是向下的。

附上nuscene提供的
//l/envs/torch1.7/lib/python3.7/site-packages/nuscenes/utils/data_classes.py

class Box:
    """ Simple data class representing a 3d box including, label, score and velocity. """
    def __init__(self,
             center: List[float],
             size: List[float],
             orientation: Quaternion,
             label: int = np.nan,
             score: float = np.nan,
             velocity: Tuple = (np.nan, np.nan, np.nan),
             name: str = None,
             token: str = None):
    """
    :param center: Center of box given as x, y, z.
    :param size: Size of box in width, length, height.
    :param orientation: Box orientation.
    :param label: Integer label, optional.
    :param score: Classification score, optional.
    :param velocity: Box velocity in x, y, z direction.
    :param name: Box name, optional. Can be used e.g. for denote category name.
    :param token: Unique string identifier from DB.
    """
    assert not np.any(np.isnan(center))
    assert not np.any(np.isnan(size))
    assert len(center) == 3
    assert len(size) == 3
    assert type(orientation) == Quaternion

    self.center = np.array(center)
    self.wlh = np.array(size)
    self.orientation = orientation
    self.label = int(label) if not np.isnan(label) else label
    self.score = float(score) if not np.isnan(score) else score
    self.velocity = np.array(velocity)
    self.name = name
    self.token = token

    def __eq__(self, other):
        center = np.allclose(self.center, other.center)
        wlh = np.allclose(self.wlh, other.wlh)
        orientation = np.allclose(self.orientation.elements, other.orientation.elements)
        label = (self.label == other.label) or (np.isnan(self.label) and np.isnan(other.label))
        score = (self.score == other.score) or (np.isnan(self.score) and np.isnan(other.score))
        vel = (np.allclose(self.velocity, other.velocity) or
               (np.all(np.isnan(self.velocity)) and np.all(np.isnan(other.velocity))))

        return center and wlh and orientation and label and score and vel

    def __repr__(self):
        repr_str = 'label: {}, score: {:.2f}, xyz: [{:.2f}, {:.2f}, {:.2f}], wlh: [{:.2f}, {:.2f}, {:.2f}], ' \
                   'rot axis: [{:.2f}, {:.2f}, {:.2f}], ang(degrees): {:.2f}, ang(rad): {:.2f}, ' \
                   'vel: {:.2f}, {:.2f}, {:.2f}, name: {}, token: {}'

        return repr_str.format(self.label, self.score, self.center[0], self.center[1], self.center[2], self.wlh[0],
                               self.wlh[1], self.wlh[2], self.orientation.axis[0], self.orientation.axis[1],
                               self.orientation.axis[2], self.orientation.degrees, self.orientation.radians,
                               self.velocity[0], self.velocity[1], self.velocity[2], self.name, self.token)

    def translate(self, x: np.ndarray) -> None:
        """
        Applies a translation.
        :param x: <np.float: 3, 1>. Translation in x, y, z direction.
        """
        self.center += x

    def rotate(self, quaternion: Quaternion) -> None:
        """
        Rotates box.
        :param quaternion: Rotation to apply.
        """
        self.center = np.dot(quaternion.rotation_matrix, self.center)
        self.orientation = quaternion * self.orientation
        self.velocity = np.dot(quaternion.rotation_matrix, self.velocity)

    def corners(self, wlh_factor: float = 1.0) -> np.ndarray:
        """
        Returns the bounding box corners.
        :param wlh_factor: Multiply w, l, h by a factor to scale the box.
        :return: <np.float: 3, 8>. First four corners are the ones facing forward.
            The last four are the ones facing backwards.
        """
        w, l, h = self.wlh * wlh_factor

        # 3D bounding box corners. (Convention: x points forward, y to the left, z up.)
        x_corners = l / 2 * np.array([1,  1,  1,  1, -1, -1, -1, -1])
        y_corners = w / 2 * np.array([1, -1, -1,  1,  1, -1, -1,  1])
        z_corners = h / 2 * np.array([1,  1, -1, -1,  1,  1, -1, -1])
        corners = np.vstack((x_corners, y_corners, z_corners))

        # Rotate
        corners = np.dot(self.orientation.rotation_matrix, corners)

        # Translate
        x, y, z = self.center
        corners[0, :] = corners[0, :] + x
        corners[1, :] = corners[1, :] + y
        corners[2, :] = corners[2, :] + z

        return corners

    def bottom_corners(self) -> np.ndarray:
        """
        Returns the four bottom corners.
        :return: <np.float: 3, 4>. Bottom corners. First two face forward, last two face backwards.
        """
        return self.corners()[:, [2, 3, 7, 6]]

通过create_frustum函数得到采样点frustum[41,8,22,3],这里的41是有41个深度值,值域[4-45],22是图像统一resize、crop的大小为[128,352], 下采样16倍为[8, 22], 22里面每个值是s=352/16, [0, s, 2s,3s,4s,..] 即[0, 16.7143, 33.4286, 50.1429, 66.8571, 83.5714, 100.2857, ..., 351]. 在(128, 352)图上每隔16个点取值,同时每个点配41个深度值。具体如何整出[41,8,22,3],可以看如下链接:

https://www.cnblogs.com/yanghailin/p/17452610.html

def create_frustum(self):
    # make grid in image plane
    # 模型输入图片大小,ogfH:128, ogfW:352
    ogfH, ogfW = self.data_aug_conf['final_dim']
    # 输入图片下采样

16倍的大小,fH:8, fW:22
    fH, fW = ogfH // self.downsample

	ogfW // self.downsample
    # ds取值范围为4~44,采样间隔为1
    ds = torch.arange(*self.grid_conf['dbound'], dtype=torch.float).view(-1, 1, 1).expand(-1, fH, fW)
    D, _, _ = ds.shape
    # xs取值范围为0~351,在该范围内等间距取22个点,然后扩展维度,最终维度为(41,8,22)
    xs = torch.linspace(0, ogfW - 1, fW, dtype=torch.float).view(1, 1, fW).expand(D, fH, fW)
    # ys取值范围为0~127,在该范围内等间距取8个点,然后扩展维度,最终维度为(41,8,22)
    ys = torch.linspace(0, ogfH - 1, fH, dtype=torch.float).view(1, fH, 1).expand(D, fH, fW)

    # D x H x W x 3
    # frustum维度为(41,8,22,3)
    frustum = torch.stack((xs, ys, ds), -1)
    return nn.Parameter(frustum, requires_grad=False)

get_geometry函数把frustum [41, 8, 22, 3]通过坐标系转换到自车坐标系下。


 # x: shape[b, 5, 3, 128, 352]
    # rots: shape[b, 5, 3, 3]
    # trans: shape[b, 5, 3]
    # intrins: shape[b, 5, 3, 3]
    # post_rots: shape[b, 5, 3, 3]
    # post_trans: shape[b, 5, 3]
    def get_geometry(self, rots, trans, intrins, post_rots, post_trans):
        """Determine the (x,y,z) locations (in the ego frame)  of the points in the point cloud.
        Returns B x N x D x H/downsample x W/downsample x 3
        """
        B, N, _ = trans.shape
        #self.frustum [41, 8, 22, 3]   [D, H, W, 3]
        # undo post-transformation
        # B x N x D x H x W x 3           [41, 8, 22, 3] - [b, 5, 1, 1, 1, 3]
        points = self.frustum - post_trans.view(B, N, 1, 1, 1, 3) #points [2, 5, 41, 8, 22, 3]
        #pts = points.unsqueeze(-1)#[2, 5, 41, 8, 22, 3, 1]
        points = torch.inverse(post_rots).view(B, N, 1, 1, 1, 3, 3).matmul(points.unsqueeze(-1)) #points [b, 5, 41, 8, 22, 3, 1]
        #https://blog.csdn.net/ouyangandy/article/details/96840781
        #https://yanghailin.blog.csdn.net/article/details/130460868?spm=1001.2014.3001.5502 看这里的最下面公式本身就乘以了个z
        # cam_to_ego        归一化平面整到成像平面
        #ccc = points[:, :, :, :, :, 2:3]   [2, 5, 41, 8, 22, 1, 1]  4,5,6,...,43, 44, 45
        #points 这里得到的是哪个坐标系下的?
        points = torch.cat((points[:, :, :, :, :, :2] * points[:, :, :, :, :, 2:3],
                            points[:, :, :, :, :, 2:3]
                            ), 5) #points [2, 5, 41, 8, 22, 3, 1]
        combine = rots.matmul(torch.inverse(intrins)) #combine[2, 5, 3, 3]
        points = combine.view(B, N, 1, 1, 1, 3, 3).matmul(points).squeeze(-1)
        points += trans.view(B, N, 1, 1, 1, 3) #points [b, 5, 41, 8, 22, 3]

        # print(points[0][0][0][0][0])
        # print(points[0][0][0][0][1])
        # print(points[0][0][0][0][2])
        # print(points[0][0][0][0][3])
        # print(points[0][0][0][0][4])
        # print(points[0][0][0][0][5])
        # print(points[0][0][0][0][6])
        # tensor([5.6902, 2.5839, 2.1921], device='cuda:0')
        # tensor([5.6915, 2.3457, 2.1874], device='cuda:0')
        # tensor([5.6928, 2.1075, 2.1827], device='cuda:0')
        # tensor([5.6942, 1.8692, 2.1780], device='cuda:0')
        # tensor([5.6955, 1.6310, 2.1733], device='cuda:0')
        # tensor([5.6968, 1.3928, 2.1686], device='cuda:0')
        # tensor([5.6981, 1.1546, 2.1639], device='cuda:0')

               #[b, 5, 41, 8, 22, 3]
        return points

可视化这里points,可视化代码:

    def show_geom(self, geom):#[b, 5, 41, 8, 22, 3]
        geom = geom.cpu().detach().numpy()
        geom_one = geom[0].reshape(5, -1, 3) #[5, 7216, 3]

        from matplotlib import pyplot as plt
        plt.figure(figsize=(12, 8))
        colors = ['r', 'g', 'b', 'c', 'm']  # 颜色列表
        # x = geom_one[:, :, 0]
        for i in range(5):
            plt.scatter(geom_one[i, :, 0], geom_one[i, :, 1], 0.5, c=colors[i])
        plt.axis('image')
        plt.show()
        plt.savefig("./geom2.png")

其中一个前视摄像头,

可视化固定深度的,

实际的是立体,类似于这样:

所以这里就不难理解论文中的插图,

    def get_cam_feats(self, x):#x: [B, N, 3, 128, 352]
        """Return B x N x D x H/downsample x W/downsample x C
        """
        B, N, C, imH, imW = x.shape

        x = x.view(B*N, C, imH, imW) #[10, 3, 128, 352]
        x = self.camencode(x) #x [10, 64, 41, 8, 22]
        x = x.view(B, N, self.camC, self.D, imH//self.downsample, imW//self.downsample) #x [b, 5, 64, 41, 8, 22]
        x = x.permute(0, 1, 3, 4, 5, 2) #[b, 5, 41, 8, 22, 64]
        return x
    x = self.get_cam_feats(x) #out_x:[b, 5, 41, 8, 22, 64]   in_x:[b, 5, 3, 128, 352]
     
    def get_cam_feats(self, x):#x: [B, N, 3, 128, 352]
        """Return B x N x D x H/downsample x W/downsample x C
        """
        B, N, C, imH, imW = x.shape

        x = x.view(B*N, C, imH, imW) #[b×5, 3, 128, 352]
        x = self.camencode(x) #x [b×5, 64, 41, 8, 22]
        x = x.view(B, N, self.camC, self.D, imH//self.downsample, imW//self.downsample) #x [b, 5, 64, 41, 8, 22]
        x = x.permute(0, 1, 3, 4, 5, 2) #[b, 5, 41, 8, 22, 64]
        return x                           

这里的camEncode是把图片输入x[b*5, 3, 128, 352]变成[b×5, 64, 41, 8, 22], 也即论文中这个图:

在网络中用softmax操作把值归一化到0-1之间的概率,作为深度的一个概率分布。深度D=64,特征C=64,一个像素值给配上(64*41)矩阵,当这个像素比如35m的深度,那个35米处的特征就选中就是深颜色高亮。就是35米的概率值大比如0.99这样。这些都是隐式的让网络学,并没有真值约束。

class CamEncode(nn.Module):
    def __init__(self, D, C, downsample):#D41  C64
        super(CamEncode, self).__init__()
        self.D = D
        self.C = C

        self.trunk = EfficientNet.from_pretrained("efficientnet-b0")
                    #432
        self.up1 = Up(320+112, 512)
        self.depthnet = nn.Conv2d(512, self.D + self.C, kernel_size=1, padding=0)
                        #x [10, 41, 8, 22]
    def get_depth_dist(self, x, eps=1e-20):
        return x.softmax(dim=1)

    def get_depth_feat(self, x):#x[10, 3, 128, 352]
        x = self.get_eff_depth(x) #x[10, 512, 8, 22]
        # Depth  out_num=self.D + self.C = 41 + 64 = 105
        x = self.depthnet(x) #x[10, 105, 8, 22]

        depth = self.get_depth_dist(x[:, :self.D])#x[10, 41, 8, 22]
        # aa = depth.unsqueeze(1) #[10, 1, 41, 8, 22]
        # bb = x[:, self.D:(self.D + self.C)]#[10, 64, 8, 22]
        # cc = x[:, self.D:(self.D + self.C)].unsqueeze(2)#[10, 64, 1, 8, 22]
        new_x = depth.unsqueeze(1) * x[:, self.D:(self.D + self.C)].unsqueeze(2)#[10, 64, 41, 8, 22]

        return depth, new_x

    def get_eff_depth(self, x):#x[10, 3, 128, 352]
        # adapted from https://github.com/lukemelas/EfficientNet-PyTorch/blob/master/efficientnet_pytorch/model.py#L231
        endpoints = dict()

        # Stem
        x = self.trunk._swish(self.trunk._bn0(self.trunk._conv_stem(x)))
        prev_x = x

        # Blocks
        for idx, block in enumerate(self.trunk._blocks):
            drop_connect_rate = self.trunk._global_params.drop_connect_rate
            if drop_connect_rate:
                drop_connect_rate *= float(idx) / len(self.trunk._blocks) # scale drop connect_rate
            x = block(x, drop_connect_rate=drop_connect_rate)
            if prev_x.size(2) > x.size(2):
                endpoints['reduction_{}'.format(len(endpoints)+1)] = prev_x
            prev_x = x

        # Head
        endpoints['reduction_{}'.format(len(endpoints)+1)] = x
        x = self.up1(endpoints['reduction_5'], endpoints['reduction_4'])
        return x #[10, 512, 8, 22]

    def forward(self, x): #x[10, 3, 128, 352]
        depth, x = self.get_depth_feat(x)  #depth [10, 41, 8, 22]
                                           #x [10, 64, 41, 8, 22]
        return x

这里voxel_pooling是一个重点函数,这里的geom_feats是点云位置坐标,x是提取的图像特征。需要根据点云坐标去图像对应位置拉取特征。

这里的点云和x坐标是一一对应的。图像特征是图像坐标系x右y下,geom_feats也是根据图像x右y下一个个点变换到ego坐标系的。就是说x的第一个点坐标和geom_feats的第一个坐标是一一对应的。

step1:geom_feats = ((geom_feats - (self.bx - self.dx/2.)) / self.dx).long()

这个由自车坐标系拉到右下角,x和y上面的分辨率是0.5米一格(dx是[0.5, 0.5, 20])。这里有个细节就是,在做真值gt的时候get_binimg函数也是有个把坐标原点拉到右下角,摘自 get_binimg函数

(意思是把坐标系挪到右下角 pts = np.round( (pts - self.bx[:2] + self.dx[:2]/2.) / self.dx[:2] ).astype(np.int32)
pts[:, [1, 0]] = pts[:, [0, 1]] #坐标系xy对换,图3)

但是这里没有x,y对换,为什么呢?自己想

最后的这里对换了?(final[geom_feats[:, 3], :, geom_feats[:, 2], geom_feats[:, 0], geom_feats[:, 1]])

step2:geom_feats = torch.cat((geom_feats, batch_ix), 1) #geom_feats[72160, 4]

这里把batch_id加在geom_feats后,由于上面geom_feats = geom_feats.view(Nprime, 3)把batch维度合并了,这里加上这个点是属于哪个batchsize的。

step3:

x = x[kept] # [68527, 64] <-- [72160, 64]

geom_feats = geom_feats[kept] #[68527, 4] (X, Y, Z, B)

这里通过kept过滤,只保留[200, 200,1]内的点,dx是[0.5, 0.5, 20],所以就是保留[100, 100, 20]米的特征。 检测范围就是自车前50米后50米、左50米右50米。

这里x和geom_feats都是通过kept过滤,就是说x和geom_feats是一一对应的。

step4:

ranks = geom_feats[:, 0] * (self.nx[1] * self.nx[2] * B)+ geom_feats[:, 1] * (self.nx[2] * B)+ geom_feats[:, 2] * B+ geom_feats[:, 3]

    #geom_feats: [2, 5, 41, 8, 22, 3]
    #x:          [2, 5, 41, 8, 22, 64]
    def voxel_pooling(self, geom_feats, x):
        B, N, D, H, W, C = x.shape
        Nprime = B*N*D*H*W #72160

        # flatten x
        x = x.reshape(Nprime, C) #[72160, 64]

        #bx = self.bx #[-49.75, -49.75, 0]
        #self.dx  [0.5, 0.5, 20]  parameter(3, )
        # t0 = self.bx - self.dx / 2. #tensor(3) [-50, -50, -10]
        # flatten indices
        # geom_feats [2, 5, 41, 8, 22, 3]
        # for i in range(22):
        #     for j in range(3):
        #         print(geom_feats[0][0][40][6][i][j])
        #- (self.bx - self.dx/2.) [50, 50, 10]              self.dx[0.5, 0.5, 20]
        
        ##step1:
        geom_feats = ((geom_feats - (self.bx - self.dx/2.)) / self.dx).long() ##变为整数    [2, 5, 41, 8, 22, 3]
        # [72160, 3]
        geom_feats = geom_feats.view(Nprime, 3) #[72160, 3]
        #batch_ix [72160, 1]
        batch_ix = torch.cat([torch.full([Nprime//B, 1], ix,
                             device=x.device, dtype=torch.long) for ix in range(B)])
        #step2:
        geom_feats = torch.cat((geom_feats, batch_ix), 1) #geom_feats[72160, 4]
        #self.nx values[200,200,1]
        # filter out points that are outside box  || kept[72160,]
        #step3:
        kept = (geom_feats[:, 0] >= 0) & (geom_feats[:, 0] < self.nx[0])\
            & (geom_feats[:, 1] >= 0) & (geom_feats[:, 1] < self.nx[1])\
            & (geom_feats[:, 2] >= 0) & (geom_feats[:, 2] < self.nx[2])
        x = x[kept]  ##[72160, 64]  --> [68527, 64]
        geom_feats = geom_feats[kept] #[68527, 4]            (X, Y, Z, B)

        # get tensors from the same voxel next to each other #ranks [68621,]   self.nx value[200, 200, 1]
        # geom_feats[68621, 4]
        # ranks:[68621,] 把200*200平铺成一维,ranks就是geom_feats在平铺的200*200一维数组中的位置
        #step4:
        ranks = geom_feats[:, 0] * (self.nx[1] * self.nx[2] * B)\
            + geom_feats[:, 1] * (self.nx[2] * B)\
            + geom_feats[:, 2] * B\
            + geom_feats[:, 3]
        sorts = ranks.argsort() #[68621,]  由小到大的索引
        #x[68621,64]  geom_feats[68621,4]  ranks[68621]
        x, geom_feats, ranks = x[sorts], geom_feats[sorts], ranks[sorts]
		
		#step5:
        # cumsum trick  out_x:[21465,64]  geom_feats[21465,4]
        if not self.use_quickcumsum:
            x, geom_feats = cumsum_trick(x, geom_feats, ranks)
        else:
            x, geom_feats = QuickCumsum.apply(x, geom_feats, ranks)
        #x[20192, 64]  geom_feats[20192, 4]
        # griddify (B x C x Z x X x Y) || final[2, 64, 1, 200, 200]
        #final[b, 64, 1, 200, 200]           C=64   self.nx[200, 200, 1]
        final = torch.zeros((B, C, self.nx[2], self.nx[0], self.nx[1]), device=x.device)
        final[geom_feats[:, 3], :, geom_feats[:, 2], geom_feats[:, 0], geom_feats[:, 1]] = x
        #ccc [b, 64, 200, 200]      final[b, 64, 1, 200, 200]
        # ccc = final.unbind(dim=2) #tuple 1

        # collapse Z   #final [2, 64, 200, 200]
        final = torch.cat(final.unbind(dim=2), 1)

        return final

step4:

假设 geom_feats 的形状为 [20, 4],即有 20 个点,每个点有 4 个坐标 [X, Y, Z, B]。为了计算每个点的 ranks 值,我们需要知道具体的 self.nx 和批次大小 B 的值。

假设参数如下:

  • self.nx = [200, 200, 1],即体素网格大小。
  • 批次大小 B = 2

下面列出一个假设的 geom_feats 数组(20 个样本)及其对应的 ranks 计算。

假设的 geom_feats

假设 geom_feats 的坐标如下:

Index X Y Z B
0 10 15 0 0
1 10 15 0 1
2 10 16 0 0
3 11 15 0 0
4 11 15 1 0
5 11 16 0 0
6 20 25 0 1
7 25 30 0 0
8 30 35 0 1
9 35 40 0 0
10 40 45 0 1
11 45 50 0 0
12 50 55 0 1
13 55 60 0 0
14 60 65 0 1
15 65 70 0 0
16 70 75 0 1
17 75 80 0 0
18 80 85 0 1
19 85 90 0 0

计算公式

根据公式:

ranks = geom_feats[:, 0] * (self.nx[1] * self.nx[2] * B) \
      + geom_feats[:, 1] * (self.nx[2] * B) \
      + geom_feats[:, 2] * B \
      + geom_feats[:, 3]

计算前:

  • self.nx[1] * self.nx[2] * B = 200 * 1 * 2 = 400
  • self.nx[2] * B = 1 * 2 = 2

逐个计算 ranks

Index X Y Z B Ranks Calculation Ranks
0 10 15 0 0 (10 × 400 + 15 × 2 + 0 × 2 + 0 = 4030) 4030
1 10 15 0 1 (10 × 400 + 15 × 2 + 0 × 2 + 1 = 4031) 4031
2 10 16 0 0 (10 × 400 + 16 × 2 + 0 × 2 + 0 = 4032) 4032
3 11 15 0 0 (11 × 400 + 15 × 2 + 0 × 2 + 0 = 4430) 4430
4 11 15 1 0 (11 × 400 + 15 × 2 + 1 × 2 + 0 = 4432) 4432
5 11 16 0 0 (11 × 400 + 16 × 2 + 0 × 2 + 0 = 4432) 4432
6 20 25 0 1 (20 × 400 + 25 × 2 + 0 × 2 + 1 = 8031) 8031
7 25 30 0 0 (25 × 400 + 30 × 2 + 0 × 2 + 0 = 10060) 10060
8 30 35 0 1 (30 × 400 + 35 × 2 + 0 × 2 + 1 = 12071) 12071
9 35 40 0 0 (35 × 400 + 40 × 2 + 0 × 2 + 0 = 14080) 14080
10 40 45 0 1 (40 × 400 + 45 × 2 + 0 × 2 + 1 = 16091) 16091
11 45 50 0 0 (45 × 400 + 50 × 2 + 0 × 2 + 0 = 18100) 18100
12 50 55 0 1 (50 × 400 + 55 × 2 + 0 × 2 + 1 = 20111) 20111
13 55 60 0 0 (55 × 400 + 60 × 2 + 0 × 2 + 0 = 22120) 22120
14 60 65 0 1 (60 × 400 + 65 × 2 + 0 × 2 + 1 = 24131) 24131
15 65 70 0 0 (65 × 400 + 70 × 2 + 0 × 2 + 0 = 26140) 26140
16 70 75 0 1 (70 × 400 + 75 × 2 + 0 × 2 + 1 = 28151) 28151
17 75 80 0 0 (75 × 400 + 80 × 2 + 0 × 2 + 0 = 30160) 30160
18 80 85 0 1 (80 × 400 + 85 × 2 + 0 × 2 + 1 = 32171) 32171
19 85 90 0 0 (85 × 400 + 90 × 2 + 0 × 2 + 0 = 34180) 34180

这些计算结果生成了每个点的 ranks 值,用于表示该点在展平的索引中的位置。

这里需要注意计算公式,

ranks = geom_feats[:, 0] * (self.nx[1] * self.nx[2] * B) + geom_feats[:, 1] * (self.nx[2] * B) + geom_feats[:, 2] * B + geom_feats[:, 3]

ranks = geom_feats[:, 0] ×400+ geom_feats[:, 1] *2+ geom_feats[:, 2] *2 +geom_feats[:, 3]

上面的index不同的xyz值可以产生相同的ranks值,但是不同的B是不会产生相同的值。

  1. 组合 1:(X=1, Y=100, Z=0)
    • ranks = 1 * 200 + 100 * 1 + 0 = 200 + 100 = 300
  2. 组合 2:(X=0, Y=300, Z=0)
    • ranks = 0 * 200 + 300 * 1 + 0 = 0 + 300 = 300

这两个组合的 (X, Y, Z) 不同,但 ranks 的结果都是 300

step4:根据ranks值由小到大排序。这里由小到大也相当于从右下角开始的原点选择。

    sorts = ranks.argsort() #[68621,]  由小到大的索引
    #x[68621,64]  geom_feats[68621,4]  ranks[68621]
    x, geom_feats, ranks = x[sorts], geom_feats[sorts], ranks[sorts]

step5:x, geom_feats = cumsum_trick(x, geom_feats, ranks)

class QuickCumsum(torch.autograd.Function): #x:[68527, 64]   geom_feats[68527, 4]  ranks[68527]
    @staticmethod
    def forward(ctx, x, geom_feats, ranks):
        x = x.cumsum(0) #x:[68527, 64] 累计和
        kept = torch.ones(x.shape[0], device=x.device, dtype=torch.bool) #[68527,]
        kept[:-1] = (ranks[1:] != ranks[:-1])
        # 当前值和下面不一样的是1, 一样的是0, 拿1, 就是拿最下面大的那个
        #x[19586, 64]   geom_feats[19586, 4]
        x, geom_feats = x[kept], geom_feats[kept]

        # a = x[:1] #[1, 64]
        # b = x[1:] #[19585, 64]
        # c = x[:-1] #[19585, 64]
        #x#[19586, 64]
        x = torch.cat((x[:1], x[1:] - x[:-1]))

        # save kept for backward
        ctx.save_for_backward(kept)

        # no gradient for geom_feats
        ctx.mark_non_differentiable(geom_feats)

        return x, geom_feats

用简单的数值带入函数方便理解:

import torch

x0 = torch.rand((10, 3))
x0 = torch.arange(1, 11).unsqueeze(1)
x0 = x0.expand(-1, 3)
geom_feats = torch.rand((10, 4))
ranks = torch.tensor([4,4, 202, 9,9,9,1,1,10,29])

x1 = x0.cumsum(0)
kept = torch.ones(x1.shape[0], device=x1.device, dtype=torch.bool) #最后一个为1,代表无论如何都需要求和
kept[:-1] = (ranks[1:] != ranks[:-1]) #保留不一样的地方

# 4,4,202,9,9,9,1,1,10,29
ranks[1:] : 4,202,  9,  9,9,1,1,10,29
ranks[:-1]: 4, 4,  202, 9,9,9,1, 1,10
kept[:-1] : 0, 1,   1,  0,0,1,0,1,1

#所以kept:0, 1,   1,  0,0,1,0,1,1, 1
#这里0代表就是相同的,需要累加的
#1就是累加,若1前面有0就是累加, 否则就是当前值。


x2, geom_feats = x1[kept], geom_feats[kept]

x3 = torch.cat((x2[:1], x2[1:] - x2[:-1]))

print("--x0"*8)
print(x0)
print("--x1"*8)
print(x1)
print("--x2"*8)
print(x2)
print("--x3"*8)
print(x3)
--x0--x0--x0--x0--x0--x0--x0--x0
tensor([[ 1,  1,  1],    #4
        [ 2,  2,  2], 	 #4
        [ 3,  3,  3],    #202
        [ 4,  4,  4],    #9
        [ 5,  5,  5],	 #9
        [ 6,  6,  6],	 #9
        [ 7,  7,  7],    #1
        [ 8,  8,  8],    #1
        [ 9,  9,  9],    #10
        [10, 10, 10]])   #29
--x1--x1--x1--x1--x1--x1--x1--x1
tensor([[ 1,  1,  1],
        [ 3,  3,  3],
        [ 6,  6,  6],
        [10, 10, 10],
        [15, 15, 15],
        [21, 21, 21],
        [28, 28, 28],
        [36, 36, 36],
        [45, 45, 45],
        [55, 55, 55]])
--x2--x2--x2--x2--x2--x2--x2--x2
tensor([[ 3,  3,  3],
        [ 6,  6,  6],
        [21, 21, 21],
        [36, 36, 36],
        [45, 45, 45],
        [55, 55, 55]])
--x3--x3--x3--x3--x3--x3--x3--x3
tensor([[ 3,  3,  3],
        [ 3,  3,  3],
        [15, 15, 15],
        [15, 15, 15],
        [ 9,  9,  9],
        [10, 10, 10]])

以上,先看现象,ranks值:[4,4, 202, 9,9,9,1,1,10,29], 前面两个ranks值相等,所以输出累加和是[3,3,3], ranks值202不相等,那么就它自己,输出[3,3,3],再接着3个ranks9相等,对应的是[4,4,4] ,[5,5,5],[6,6,6],所以输出累计和是[15,15,15],再接着是两个1,1ranks值,对应[7,7,7]和[8,8,8],所以输出累计和是[15,15,15]。以此类推。

z总结一下具体方法就是先累计求和,然后得到ranks不一样的地方的累计和。 然后再用下一个减去前一个得到:相同的地方就说保存累计和、不一样的地方保存本身。

这里需要看下具体实现方法:这里的 x = x.cumsum(0) #x:[68527, 64] 累计和,

是累计和,dim=0,是一个点的特征(64维)和下一个点特征(64维)每维度求和。并不是每个点特征的累计和。网上好多博客讲解这里最后就说只保留最后一个点特征,其实是错误的。

        if not self.use_quickcumsum:
            x, geom_feats = cumsum_trick(x, geom_feats, ranks)
        else:
            x, geom_feats = QuickCumsum.apply(x, geom_feats, ranks)
        #x[20192, 64]  geom_feats[20192, 4]
        # griddify (B x C x Z x X x Y) || final[2, 64, 1, 200, 200]
        #final[b, 64, 1, 200, 200]           C=64   self.nx[200, 200, 1]
        final = torch.zeros((B, C, self.nx[2], self.nx[0], self.nx[1]), device=x.device)
        final[geom_feats[:, 3], :, geom_feats[:, 2], geom_feats[:, 0], geom_feats[:, 1]] = x
        #ccc [b, 64, 200, 200]      final[b, 64, 1, 200, 200]
        # ccc = final.unbind(dim=2) #tuple 1

        # collapse Z   #final [2, 64, 200, 200]
        final = torch.cat(final.unbind(dim=2), 1)

        return final

标签:Shoot,200,10,self,Lift,geom,LSS,64,feats
From: https://www.cnblogs.com/yanghailin/p/18540590

相关文章

  • Shooter Game User Interface Starter
    射击游戏用户界面工具包这个工具包为射击游戏开发者提供了一套完整的UnityUI布局屏幕和预制件,旨在加速游戏界面的开发过程。以下是工具包的核心特性:屏幕布局:包含9个完整的UnityUI布局屏幕,覆盖装备、选项、游戏模式、大厅、社交、装备详情、登录、设置等多个游戏界面。......
  • Lift-Splat-Shoot 复现
    我理解的复现,就是把代码跑通,完整训练一遍,然后测试,争取达到论文里报告的效果。虽然大部分工作复现出来可能都到不了论文里的性能,比较玄学。概述Lift-Splat-Shoot(LSS)是BEV方法的开山之作,作者来自NVIDIA。该方法是一个纯视觉的感知方法,用来做BEV分割任务的,但是其架构和思......
  • 基于NRBO、CPO、TTAO、FVIM-CNN-LSSVM/CNN-LSSVM回归预测 5 模型一键对比 Matlab
    基于NRBO-CNN-LSSVM、CPO-CNN-LSSVM、TTAO-CNN-LSSVM、FVIM-CNN-LSSVM、CNN-LSSVM五模型多变量回归预测一键对比(仅运行一个main即可)Matlab代码代码解释:(优化算法均为24年算法)优化参数为:批次数、正则化系数、学习率【牛顿拉夫逊算法、冠豪猪算法、三角拓扑聚合算法、四向......
  • 基于网格搜索优化最小二乘向量机(GS-LSSVM)的数据多变量回归预测 Matlab代码(多输入单
    基于网格搜索优化最小二乘向量机(GS-LSSVM)的数据多变量回归预测Matlab代码(多输入单输出)程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!网格搜索GS优化参数为:sigma、gamma1.购买前GS可以更换为其他的优化算法!需要其他算法的都可以定制!注:1️⃣、运行环境要......
  • SS241012B. 电梯(lift)
    SS241012B.电梯(lift)题意你有\(n\)种货物,每种货物有一个高度\(f\)和体积\(w\)。其中\(w\)表示体积是\(2^w\)。你有一个大小为\(2^m\)的背包,一个背包的花费是背包物品的最大高度,问使用若干个背包装完物品的最小代价。思路膜拜黄队%%%感觉黄队的做法比题解好。首先一......
  • P8392 [BalticOI 2022 Day1] Uplifting Excursion(特殊背包问题)
    题意简述有\(2m+1\)种物品,体积分别为\(-m\simm\),每种物品有\(a_i\)个。你需要选出尽可能多数量的物品,使得物品体积和为\(l\)。\(m\le300,a_i,|l|\le10^{18}\)分析此题属于“背包容量极大,物品体积极小”的特殊背包问题。考虑背包问题的经典错误贪心:按照性价比降序排......
  • 题解:P9947 [USACO20JAN] Photoshoot B
    P9947[USACO20JAN]PhotoshootB题解纯模拟!在\(a_{1}\)算出来之后,我们就可以通过\(b\)数组可以求出以后\(a\)数组的所有元素。要判断是否为排列,我们可以使用一个\(vis\)做桶,为了保证字典序最小,我们可以从\(1\)开始枚举,每次枚举前要清空一下\(vis\)数组,最后使用......
  • Liftoff:基于参考基因组的基因组注释
    Liftoff是一个可以准确根据同一物种或近缘物种基因组进行基因注释映射的工具(与liftOver进行不同基因组版本的染色体位置转换有点类似)。该工具仅需两个基因组序列和参考基因组的基因注释文件即可进行基因注释。Liftoff使用minimap2将参考基因组的基因序列与目标基因组比对,这样的好......
  • 南沙C++noip老师解一本通题: 1360:奇怪的电梯(lift)
    ​【题目描述】大楼的每一层楼都可以停电梯,而且第i层楼(1≤i≤N)上有一个数字Ki(0≤=Ki≤=N)。电梯只有四个按钮:开,关,上,下。上下的层数等于当前楼层上的那个数字。当然,如果不能满足要求,相应的按钮就会失灵。例如:33125代表了Ki(K1=3,K2=3,……),从一楼开始。在一楼,按“上”可以到4......
  • Liftoff:基于参考基因组的基因组注释
    Liftoff是一个可以准确根据同一物种或近缘物种基因组进行基因注释映射的工具(与liftOver进行不同基因组版本的染色体位置转换有点类似)。该工具仅需两个基因组序列和参考基因组的基因注释文件即可进行基因注释。Liftoff使用minimap2将参考基因组的基因序列与目标基因组比对,这样的......