首页 > 其他分享 >Neural Networks for Image  Classification Duration

Neural Networks for Image  Classification Duration

时间:2024-11-08 15:57:33浏览次数:3  
标签:10 training Image CIFAR your Duration ID dataset Networks

Lab 2: Neural Networks for Image  Classification Duration : 2 hoursTools:

  • Jupyter Notebook
  • IDE: PyCharm==2024.2.3 (or any IDE of your choice)
  • Python: 3.12
  • Libraries:

o PyTorch==2.4.0

o TorchVision==0.19.0

o Matplotlib==3.9.2

Learning Objectives:

  • Understand the basic architecture of a neural network.
  • Load and explore the CIFAR-10 dataset.
  • Implement and train a neural network, individualized by your QMUL ID.
  • Verify machine learning concepts such as accuracy, loss, and evaluation metrics

by running predefined code.Lab Outline:

In this lab, you will implement a simple neural network model to classify images fromthe CIFAR-10 dataset. The task will be individualized based on your QMUL ID to ensureunique configurations for each student.

  1. Task 1: Understanding the CIFAR-10 Dataset
  • The CIFAR-10 dataset consists of 60,000 32x32 color images categorized into 10classes (airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks).
  • The dataset is divided into 50,000 training images and 10,000 testing images.
  • You will load the CIFAR-10 dataset using PyTorch’s built-in torchvision library.

Step-by-step Instructions:

  1. Open the provided Jupyter Notebook.
  2. Load and explore the CIFAR-10 dataset using the following code:import torchvision.transforms as transformsimport torchvision.datasets as datasets

# Basic transformations for the CIFAR-10 datasettransform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))])

# Load the CIFAR-10 datasetdataset = 代写Neural Networks for Image  Classification Duration datasets.CIFAR10(root='./data', train=True,download=True, transform=transform)

  1. Task 2: Individualized Neural Network Implementation, Training, and TestYou will implement a neural network model to classify images from the CIFAR-10dataset. However, certain parts of the task will be individualized based on your QMUL
  1. Follow the instructions carefully to ensure your model’s configuration is unique.

Step 1: Dataset Split Based on Your QMUL ID You will use the last digit of your QMUL ID to define the training-validation split:

  • If your ID ends in 0-4: use a 70-30 split (70% training, 30% validation).
  • If your ID ends in 5-9: use an 80-20 split (80% training, 20% validation).

Code:

plt.show()Lab Report Submission and Marking CriteriaAfter completing the lab, you need to submit a report that includes:

  1. Individualized Setup (20/100):

o Clearly state the unique configurations used based on your QMUL ID,including dataset split, number of epochs, learning rate, and batch size.

  1. Neural Network Architecture and Training (30/100):

o Provide an explanation of the model architecture (i.e., the number of inputlayer, hidden layer, and output layer, activation function) and trainingprocedure (i.e., the used optimizer).o Include the plots of training loss, training and validation accuracy.

  1. Results Analysis (30/100):o Provide analysis of the training and validation performance.o Reflect on whether the model is overfitting or underfitting based on theprovided results.
  1. Concept Verification (20/100):

o Answer the provided questions below regarding machine learningconcepts.(1) What is overfitting issue? List TWO methods for addressing the overfittingissue.

(2) What is the role of loss function? List TWO representative loss functions.

标签:10,training,Image,CIFAR,your,Duration,ID,dataset,Networks
From: https://www.cnblogs.com/comp9321/p/18534004

相关文章

  • 《DNK210使用指南 -CanMV版 V1.0》第三十六章 image图像色块追踪实验
    第三十六章image图像色块追踪实验1)实验平台:正点原子DNK210开发板2)章节摘自【正点原子】DNK210使用指南-CanMV版V1.03)购买链接:https://detail.tmall.com/item.htm?&id=7828013987504)全套实验源码+手册+视频下载地址:http://www.openedv.com/docs/boards/k210/ATK-DNK210.htm......
  • 103_api_intro_imagerecognition_pdfsplitter
    PDF分割拆分API数据接口文件处理,PDF高效的PDF分割工具,高效处理,可永久存储。1.产品功能高效处理大文件;支持多语言字符识别;支持formdata格式PDF文件流传参;支持设置每个PDF文件的页数;输出文件永久CDN存储;全接口支持HTTPS(TLSv1.0/v1.1/v1.2/v1.3);全......
  • dicom DCM_RETIRED_ImagePosition
    改标签已经废弃不建议使用特别是在医学影像如CT或MRI中这个标签描述了图像切片的坐标在患者体内的位置新的替代标签RTImagePosition((0054,0220))【适用领域:放射治疗】描述:这个标签描述了放射治疗中的影像位置,用于放射治疗中的精确定位。它主要用于记录和处理......
  • Failed to load local image resource(在小程序中,`src` 属性需要使用双花括号 `{{ }}`
    文章目录修改WXML文件确保图像文件路径正确检查逻辑层代码总结[渲染层网络层错误]Failedtoloadlocalimageresource/components/antiFakeQuery/imageSrctheserverrespondedwithastatusof500(HTTP/1.1500InternalServerError)(env:Windows......
  • CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for Multi-Modality
    文章信息标题CDDFuse:Correlation-DrivenDual-BranchFeatureDecompositionforMulti-ModalityImageFusion会议及时间CVPR2023主要内容为了解决建模跨模态特征和分解期望模态特有和模态共有特征的挑战,本文提出了一种用于多模态图像融合的双分支Transformer-CNN架构CDD......
  • Seinfeld Netflix Episode, Title, Duration, Synopsis
    https://www.netflix.com/hk-en/title/70153373 Episode1ofSeason1========1.Seinfeld======23m========AwomanJerrymetinMichiganfliesintoNewYorkandaskstostaywithhim,buthe'sunsureifit'sintendedtobearomanticsituation.Epi......
  • .NET 图像处理库 ImageSharp 退出 .NET 基金会
    .NET图像处理库ImageSharp退出.NET基金会OSCHINA 已关注 5人赞同了该文章出品|开源中国ImageSharp是一个流行的.NET项目,也是.NET生态中强大、跨平台的图像处理库。  今年早些时候,该项目负责人JamesSouth宣布计划变更ImageSh......
  • .NET 8 高性能跨平台图像处理库 ImageSharp
    阅读目录前言项目介绍项目使用常用方法常用滤镜项目地址总结最后前言传统的System.Drawing库功能丰富,但存在平台限制,不适用于跨平台开发。.NET8的发布,ImageSharp成为了一个更好的选择。ImageSharp是一个完全开源、高性能且跨平台的图像处理库,专为.NET设计......
  • .NET 8 高性能跨平台图像处理库 ImageSharp
    合集-.NET开源项目(27) 1.推荐一款界面优雅、功能强大的.NET+Vue权限管理系统08-052..NET开源权限认证项目MiniAuth上线08-063..NET与LayUI实现高效敏捷开发框架08-084..NET8+Blazor多租户、模块化、DDD框架、开箱即用08-095.推荐一个优秀的.NETMAUI组件......
  • 吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)4.7-4.
    目录第四门课卷积神经网络(ConvolutionalNeuralNetworks)第四周特殊应用:人脸识别和神经风格转换(Specialapplications:Facerecognition&Neuralstyletransfer)4.7深度卷积网络学习什么?(WhataredeepConvNetslearning?)4.8代价函数(Costfunction)第四门课卷......