首页 > 其他分享 >KAN&MLP

KAN&MLP

时间:2024-11-07 21:21:18浏览次数:3  
标签:样条 模型 扩展 KAN 网格 MLP

MLP

多层感知器(MLP)在深度学习和科学任务中的一些主要问题包括​:

固定的激活函数:MLP的激活函数通常是固定的,应用在网络节点(神经元)上,这限制了模型的表达能力。相较之下,KAN允许在边缘(权重)上使用可学习的激活函数,使模型更具适应性和灵活性。

维度诅咒(Curse of Dimensionality):MLP在高维数据中难以捕捉数据的合成结构,因此在处理高维函数时需要大量参数。这种增长会导致计算资源的浪费和效率的下降,尤其是在维度较高的情况下。而KAN通过样条和可学习的激活函数能够有效缓解这一问题。

可解释性不足:MLP模型中的权重和激活函数通常较难直接解释,因此难以直观理解模型是如何处理输入数据的。这对科学发现和符号回归等应用中的需求不匹配,而KAN通过结构设计在可视化和可解释性上更具优势。

扩展能力受限:MLP模型的扩展通常依赖于增加神经元的数量或层数来提高表现,但这种“神经缩放法则”扩展速度较慢,且训练成本较高。而KAN通过调整样条网格的细粒度(即“网格扩展”),可以逐步提升模型精度而无需重新训练。

KAN

KAN(Kolmogorov-Arnold Networks)相较于传统的多层感知器(MLP)具有以下优势​:

精确性:在小规模的AI和科学任务中,KAN能够比MLP达到更高的准确性。KAN能够在较小规模的情况下完成相似或更高的准确度,因为它们能够更好地拟合低维函数,并在有合成结构的数据中击败维度诅咒,从而达到更好的缩放法则。

可解释性:KAN网络的结构使其更具直观性,能够便于科学家进行可视化和交互,支持科学发现中的符号回归和法则重现等任务。

扩展性:KAN通过其“网格扩展”方法,可以在不从头训练的情况下,通过精细化其样条网格来提升准确性。

为了进一步提升KAN的性能,文档中提出了一些方法:

网格扩展(Grid Extension):可以通过增加样条网格的精度来提升KAN的准确性。
简化和剪枝(Simplification and Pruning):引入正则化和稀疏化技术,帮助KAN自动发现适配数据结构的最小网络结构,使得KAN网络更为简洁和易于解释。
这些方法不仅使KAN在高维任务中保持较好的表现,还提高了模型的可解释性和用户交互性,使得KAN成为MLP的一种有前途的替代方案

网格扩展

设置初始网格:首先,在一个固定的区间上(例如[a, b])定义一个粗粒度的网格,比如将区间分为少量的区间点,形成初始的粗网格。这些初始网格点用来生成B样条的基函数,从而表达目标函数。

训练粗粒度网格模型:使用粗粒度的网格进行初始训练,通过LBFGS等优化方法调整网格中的参数,得到一个基础的近似模型。

扩展网格:在初始训练完成后,将粗粒度网格扩展为更精细的网格。例如,将网格的分割数从3增加到5、10、20等,逐步增加样条的分割数量,使得模型能更精确地拟合目标函数。这种扩展可以通过在原始区间内添加更多的网格点实现。

最小二乘法优化:将新网格的样条参数初始化为旧网格的参数,通过最小二乘优化算法来调整新的样条系数,使其在新网格上尽量贴近原始粗网格的拟合结果。这样无需重新训练整个模型,而是通过局部调整来提高精度。

循环更新:重复上述步骤,不断增加网格的精细度,直到达到所需的精度。每次网格扩展后,模型的训练误差会先降低,然后逐渐稳定。适当的精细度可以在减少偏差的同时避免过拟合

标签:样条,模型,扩展,KAN,网格,MLP
From: https://www.cnblogs.com/XL2COWARD/p/18534020

相关文章

  • AI辅助Kano模型进行产品开发
    AI集成Kano模型可以改变游戏规则,了解客户需求和加强产品开发。Kano模型有助于识别不同类别的产品功能,例如必不可少、令人愉悦和无关紧要,让您优先考虑真正重要的事情。这种理解可以提高客户满意度和整体产品成功。AI集成Kano模型:简化产品开发并提高客户满意度。使用Generative......
  • 快速发论文idea:KAN+transformer,结合创新,效果翻倍。
    2024深度学习发论文&模型涨点之—KAN+TransformerKAN+Transformer是一种结合了Kolmogorov-ArnoldNetworks(KAN)和Transformer架构的新型神经网络模型。这种结合模型利用了KAN的灵活性和可解释性,以及Transformer的强大表示能力和序列处理能力,以提高复杂数据任务的效率和准确性。......
  • Rethinking Network Design and Local Geometry in Point Cloud:A Simple Residual ML
    此内容是论文总结,重点看思路!!文章概述本文提出了一种用于点云分析的简单残差MLP网络(PointMLP),通过省略复杂的几何特征提取器,仅采用残差MLP和轻量化的几何仿射模块,便能高效地提取点云特征,实现优异的分类性能。PointMLP在推理速度和准确性上优于许多现有方法,提供了一种更加高效的......
  • YOLOv8改进 | Conv篇 | 2024最新Kolmogorov-Arnold网络架构下的KANConv(包含九种不同类
    一、本文介绍本文给大家带来的改进机制是2024最新的,Kolmogorov-Arnold网络(ConvolutionalKANs),这种架构旨在将Kolmogorov-Arnold网络(KANs)的非线性激活函数整合到卷积层中,从而替代传统卷积神经网络(CNNs)的线性变换。与标准的卷积神经网络(CNN)相比,KANConv层引入了更多的参数,因......
  • Scrum和Kanban在敏捷开发中有什么区别
    Scrum和Kanban在敏捷开发中的区别:1.团队协作与工作流程;2.任务管理与计划;3.变更应对和灵活性;4.工作量估算;5.反馈机制。Scrum注重团队协作、迭代开发,而Kanban更注重流程的可视化和持续优化。了解它们的不同之处,有助于团队选择最适合其需求的方法,提高项目管理的效率和灵活性。1.团......
  • MLPerf踩坑记
    inferenceMLPerfStepsInstallCMpython3-mvenvcmsourcecm/bin/activatepipinstallcm4mlopsSetupavirtualenvironmentforPythoncmrunscript--tags=install,python-venv--name=mlperfexportCM_SCRIPT_EXTRA_CMD="--adr.python.name=mlperf"......
  • 【机器学习(九)】分类和回归任务-多层感知机 (MLP) -Sentosa_DSML社区版
    @目录一、算法概念二、算法原理(一)感知机(二)多层感知机1、隐藏层2、激活函数sigma函数tanh函数ReLU函数3、反向传播算法三、算法优缺点(一)优点(二)缺点四、MLP分类任务实现对比(一)数据加载和样本分区1、Python代码2、Sentosa_DSML社区版(二)模型训练1、Python代码2、Sentosa_DSML社区版(三)......
  • Vulkan进阶系列0 - Raytracing 基础
    一:概述    Vulkan的光线追踪是一种现代图形技术,用于实现更加逼真的高质量渲染效果。通过使用Vulkan的光线追踪扩展:VK_KHR_ray_tracing_pipeline和VK_KHR_acceleration_structure,程序员可以更加高效的模拟光线的传播,反射和折射,并能够跟踪光线在场景中的传播路径,计......
  • 【使用MLP在MANET中进行路由验证】使用多层感知神经网络进行移动自组网中的路由验证(Ma
      ......
  • Java Deeplearning4j:构建和训练多层感知器(MLP)模型
    ......