来源 | 新智元 ID | AI-era
两年前,两位高中在读的学生发现了全新的勾股定理证明方法。
遗憾的是,当时并没有更具体的论文,以提供实质性细节。
就在最近,两人的全新论文,在《美国数学月刊》上正式发表了!
论文地址:https://www.tandfonline.com/doi/full/10.1080/00029890.2024.2370240#abstract
在这篇论文中,两位作者找到了至少五个证明,与任何标准的已知证明都没有明显的相似。
陶哲轩对这项工作称赞不已。
他表示,怎样精确定义两个证明是否相同,是很微妙的。
以往的数学家证明勾股定理,用的多是代数或几何的方法。
然而这两个学生,却采用了一种「三角学」的方法。(作为数学的一个分支,「三角学」主要研究的是三角形的变长和角度之间的关系,尤其是直角三角形。)
具体来说,她们采用了一种主要基于句法的方法:在她们看来,如果一个证明避免使用圆(或坐标),但本质上使用角度,就可以被视为「三角学」证明。
就这样,她们找到了至少5个不同的证明,比如其中一个证明就涉及几何级数求和。
Ne’Kiya Jackson和Calcea Johnson
所以,是否存在「语义」方式,来区别这些证明呢?
陶哲轩表示,理论上这种方式应该是存在的,因为在某些欧几里得几何的变种中,或许本文中的证明有的有效,有的无效,反之亦然。
但即使有没有这种语义方式做区分,两位学生的研究仍然非常引人入胜。
因为——即使是数学中最古老、最基础的结果,有时也可以找到全新的证明角度!
仔细看这个视频,你会注意到真正懂数学的高中生讲起数学题来,是怎样的语气和神情。
,时长01:13
古老的勾股定理
勾股定理(亦称毕达哥拉斯定理)是平面几何中一个基本而重要的定理,也是人类早期发现并证明的重要数学定理之一:
平面上的直角三角形的两条直角边的长度(较短直角边为勾长、较长直角边为股长)的平方和等于斜边长(弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。
勾股定理可考的严谨数学证明,起源于欧几里得《几何原本》中卷一的命题47。
如今,已经有了四百多个证明,诸如微分证明、面积证明等。
一道高中竞赛题,500美元奖金
有趣的是,这项震惊数学圈的证明,催化剂竟是一道高中数学竞赛的附加题。
这道题要求找出一种全新的勾股定理证明方法(真是一个敢想,一个敢做)
因为有500美元奖金,两位学生决定尝试一把。
结果两人发现,这比想象的要困难得多……
她们度过了很多个不眠之夜,尝试找到一个证明,却屡屡失败。
好在经过一个月的脑力大爆炸后,两人都找出了新的解法。
她们高中的数学志愿者Rich认为,她们的证明足够新颖,足以在数学会议上展示,因为通常只有专业数学家和大学生才会受邀。
她们开始并没有信心,但还是决定参与。就是这时两人开始展开合作。
接下来的两三个月,两人把课后、周末、假期的所有时间都用来打造这篇论文。
令人惊讶的是,两位高中生的作品得到了认真对待,并被批准在2023年3月的美国数学学会东南分会会议上展示——于是两人成为房间里最年轻的演讲者。
随后,AMS鼓励两人把研究成果提交到学术期刊。
两人从没有为学术期刊写论文的经验,同时还在适应大学环境,需要应付小组论文、实验室数据分析、学习用LaTeX写代码等等任务。
两人表示,在家人和社区的支持下,我们坚持了下来,这段路途绝对不是简单的。
没有现成的路线图,没人保证论文一定能发表。
有很多次,她们都想放弃这件事,好在最终,两人坚持了下来。
令人困惑的三角学
而在这次发表的研究中,两位学生介绍道:在数学中,或许没有哪个学科比三角学更让高中生感到困惑了。
三角学为什么如此令人困惑?或许一个原因是,存在两种不同的方法来定义相同的三角学术语。
图1倒是展示了这些方法是如何被协调的,但结果却适得其反——
学生们或许不会意识到,这两个互不相同的三角学体系,已经被套在了相同的术语上,所以理解起来极其困难。
图1:被作者称为「数学中危害最大的图」
两位作者表示,避免混淆最合理的方法,就是给它们不同的名称,来反映背后不同的理念。
实际上,这些方法中只有一种是三角学的,专注于这个真正的版本,就可以发现大量全新的勾股定理证明!
何为三角函数证明
「trigonometry」这个词来源于希腊词「trigonon」(三角形)和「metron」(测量),因此三角函数是通过测量三角形而得到的。
实际上,三角比中的正弦(sine)和余弦(cosine)定义为锐角
标签:cos,勾股定理,已发,证明,数学,高中女生,方法,三角学 From: https://blog.csdn.net/AIBigModel/article/details/143569888