基础:
排列数字
给定一个整数 n,将数字1∼n 排成一排,将会有很多种排列方法。
现在,请你按照字典序将所有的排列方法输出。
输入格式
共一行,包含一个整数 n。
输出格式
按字典序输出所有排列方案,每个方案占一行。
数据范围
1≤n≤7
输入样例:
3
输出样例:
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
思路:
用 path 数组保存排列,当排列的长度为 n 时,是一种方案,输出。
用 state 数组表示数字是否用过。当 state[i] 为 1 时:i 已经被用过,state[i] 为 0 时,i 没有被用过。
dfs(i) 表示的含义是:在 path[i] 处填写数字,然后递归的在下一个位置填写数字。
回溯:第 i 个位置填写某个数字的所有情况都遍历后, 第 i 个位置填写下一个数字。
代码:
#include<iostream>
using namespace std;
const int N = 10;
int path[N];//保存序列
int state[N];//数字是否被用过
int n;
void dfs(int u)
{
if(u > n)//数字填完了,输出
{
for(int i = 1; i <= n; i++)//输出方案
cout << path[i] << " ";
cout << endl;
}
for(int i = 1; i <= n; i++)//空位上可以选择的数字为:1 ~ n
{
if(!state[i])//如果数字 i 没有被用过
{
path[u] = i;//放入空位
state[i] = 1;//数字被用,修改状态
dfs(u + 1);//填下一个位
state[i] = 0;//回溯,取出 i
}
}
}
int main()
{
cin >> n;
dfs(1);
}
进阶:
n皇后问题
n−n−皇后问题是指将 n个皇后放在 n×n 的国际象棋棋盘上,使得皇后不能相互攻击到,即任意两个皇后都不能处于同一行、同一列或同一斜线上。
现在给定整数 n,请你输出所有的满足条件的棋子摆法。
输入格式
共一行,包含整数 n。
输出格式
每个解决方案占 n行,每行输出一个长度为 n 的字符串,用来表示完整的棋盘状态。
其中 .
表示某一个位置的方格状态为空,Q
表示某一个位置的方格上摆着皇后。
每个方案输出完成后,输出一个空行。
注意:行末不能有多余空格。
输出方案的顺序任意,只要不重复且没有遗漏即可。
数据范围
1≤n≤9
输入样例:
4
输出样例:
.Q..
...Q
Q...
..Q.
..Q.
Q...
...Q
.Q..
代码:
#include <iostream>
using namespace std;
const int N = 11;
char q[N][N];//存储棋盘
bool dg[N * 2], udg[N * 2], cor[N];//点对应的两个斜线以及列上是否有皇后
int n;
void dfs(int r)
{
if(r == n)//放满了棋盘,输出棋盘
{
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
cout << q[i][j];
cout << endl;
}
cout << endl;
return;
}
for(int i = 0; i < n; i++)//第 r 行,第 i 列 是否放皇后
{
if(!cor[i] && !dg[i + r] && !udg[n - i + r])//不冲突,放皇后
{
q[r][i] = 'Q';
cor[i] = dg[i + r] = udg[n - i + r] = 1;//对应的 列, 斜线 状态改变
dfs(r + 1);//处理下一行
cor[i] = dg[i + r] = udg[n - i + r] = 0;//恢复现场
q[r][i] = '.';
}
}
}
int main()
{
cin >> n;
for (int i = 0; i < n; i ++ )
for (int j = 0; j < n; j ++ )
q[i][j] = '.';
dfs(0);
return 0;
}
标签:输出,优先,遍历,..,...,int,样例,dfs,DFS
From: https://blog.csdn.net/2301_80962683/article/details/143423758