训练步骤01
import torchvision
from torch.utils.data import DataLoader
from torch import nn
from model import *
#训练数据集
train_data = torchvision.datasets.CIFAR10(root="../data",train=True,transform=torchvision.transforms.ToTensor(),
download=True)
#测试数据集
test_data = torchvision.datasets.CIFAR10(root="../data",train=False,transform=torchvision.transforms.ToTensor(),
download=True)
#查看数据集中有多少图片,长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集长度为:{}".format(train_data_size))
print("测试数据集长度为{}".format(test_data_size))
#利用Dataloader来加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)
#创建网络模型
tudui = Tudui()
#损失函数
loss_fn = nn.CrossEntropyLoss()
#优化器
learning_rate = 0.01
optimizer = torch.optim.SGD(tudui.parameters(),lr = learning_rate)
#训练网络的一些参数
#训练次数
total_train_step = 0
#测试次数
total_test_step = 0
#训练轮数
epoch = 10
#循环10次
for i in range(epoch):
print("------第{}轮训练开始------".format(i+1))
#训练步骤开始
for data in train_dataloader:
imgs,targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs,targets) #损失函数
#优化器优化模型
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step = total_test_step+1
print("训练次数:{},Loss:{}".format(total_train_step,loss))
训练步骤02
import torchvision
from torch.utils.data import DataLoader
from torch import nn
from model import *
from torch.utils.tensorboard import SummaryWriter
#训练数据集
train_data = torchvision.datasets.CIFAR10(root="../data",train=True,transform=torchvision.transforms.ToTensor(),
download=True)
#测试数据集
test_data = torchvision.datasets.CIFAR10(root="../data",train=False,transform=torchvision.transforms.ToTensor(),
download=True)
#查看数据集中有多少图片,长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集长度为:{}".format(train_data_size))
print("测试数据集长度为{}".format(test_data_size))
#利用Dataloader来加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)
#创建网络模型
tudui = Tudui()
#损失函数
loss_fn = nn.CrossEntropyLoss()
#优化器
learning_rate = 0.01
optimizer = torch.optim.SGD(tudui.parameters(),lr = learning_rate)
#训练网络的一些参数
#训练次数
total_train_step = 0
#测试次数
total_test_step = 0
#训练轮数
epoch = 10
#添加tensorboard
writer = SummaryWriter("../logs_train")
#循环10次
for i in range(epoch):
print("------第{}轮训练开始------".format(i+1))
#训练步骤开始
for data in train_dataloader:
imgs,targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs,targets) #损失函数
#优化器优化模型
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step = total_test_step+1
if total_train_step % 100 ==0:
print("训练次数:{},Loss:{}".format(total_train_step,loss))
writer.add_scalar("tranin_loss",loss.item(),total_train_step)
#测试步骤
with torch.no_grad():
for data in test_dataloader:
imgs,targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs,targets)
total_test_loss = total_test_step +loss.item()
print("整体测试集上的Loss:{}".format(total_test_loss))
writer.add_scalar("test_loss",total_test_loss,total_test_step)
total_test_step = total_test_step + 1
标签:loss,模型,step,训练方法,pytorch,train,test,total,data
From: https://blog.csdn.net/weixin_53294261/article/details/143524676