题目
题解
将 \(n\) 个元素的数组 \(a\) 按块长 \(\sqrt{n}\) 进行分块处理。为每个块设置两个懒添加标记 \(add[i], sum[i]\),分别代表这个区间每个元素共同添加的数值大小,区间和(不包括懒添加的值)。
对于区间加操作,将添加值存储在符合整块都进行加法操作的块的懒标记 \(add[i]\) 上,单次操作时间复杂度 \(O(1)\),此类块至多只有 \(\sqrt{n}\) 块,最差时间复杂度 \(O(\sqrt{n})\);未符合整块的进行加法操作则进行暴力处理,即为下标位于 \([l, r]\) 的元素直接添加上 \(c\),单次操作时间复杂度 \(O(\sqrt{n})\),此类块至多只有 \(2\) 块,最差时间复杂度 \(O(2\sqrt{n})\)。
对于区间和操作,将覆盖到的整块的 \(sum[i]\) 直接添加到结果中,并且添加当前块大小乘以 \(add[i]\) 到结果中。单次操作时间复杂度 \(O(1)\),此类块至多只有 \(\sqrt{n}\) 块,最差时间复杂度 \(O(\sqrt{n})\);未符合整块的进行区间和操作则进行暴力处理,即下标位于 \([l, r]\) 的元素直接添加上 \(c\),单次操作时间复杂度 \(O(\sqrt{n})\),此类块至多只有 \(2\) 块,最差时间复杂度 \(O(2\sqrt{n})\)。
参考代码
#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
using namespace std;
typedef long long ll;
constexpr int N = 50007;
int n, op, l, r, c;
int len;//块长
ll a[N];//数列
ll add[230];//懒添加标记
ll sum[230];//块和
/*初始化块*/
void initPieces() {
len = sqrt(n);
for (int i = 1, j = 1; i <= n; ++ i) {
sum[j] += a[i];
if (i % len == 0) ++ j;
}
}
/*获取下标 x 所在的块的索引*/
int getPieceId(int x) {
return (x - 1) / len + 1;
}
/*获取第 pid 块的大小,即这个块的元素个数*/
int getPieceSize(int pid) {
return min(n, pid * len) - (pid - 1) * len;
}
/*判断下标 x 是否为块的左边界*/
bool isLeftBoundary(int x) {
return (x - 1) % len == 0;
}
/*判断下标 x 是否为块的右边界*/
bool isRightBoundary(int x) {
return x % len == 0;
}
int main() {
IOS
cin >> n;
for (int i = 1; i <= n; ++ i) cin >> a[i];
initPieces();
for (int i = 0; i < n; ++ i) {
cin >> op >> l >> r >> c;
bool isLe = isLeftBoundary(l), isRi = isRightBoundary(r);
int le = getPieceId(l), ri = getPieceId(r);
if (op) {//区间和
++ c;
ll res = 0LL;
for (int i = isLe ? le : le + 1, j = isRi ? ri : ri - 1; i <= j; ++ i) {
res = (res + sum[i] % c + add[i] * getPieceSize(i) % c) % c;
}
if (!isLe) {
while (l <= r) {
res = (res + add[le] + a[l]) % c;
if (isRightBoundary(l)) break;
++ l;
}
}
if (!isRi) {
while (l <= r) {
res = (res + add[ri] + a[r]) % c;
if (isLeftBoundary(r)) break;
-- r;
}
}
cout << res << '\n';
} else {//区间加
for (int i = isLe ? le : le + 1, j = isRi ? ri : ri - 1; i <= j; ++ i) add[i] += c;
if (!isLe) {
while (l <= r) {
a[l] += c;
sum[le] += c;
if (isRightBoundary(l)) break;
++ l;
}
}
if (!isRi) {
while (l <= r) {
a[r] += c;
sum[ri] += c;
if (isLeftBoundary(r)) break;
-- r;
}
}
}
}
return 0;
}
标签:LibreOJ,分块,int,复杂度,6280,sqrt,添加,ll
From: https://www.cnblogs.com/RomanLin/p/18560154