首页 > 其他分享 >hellojnitest

hellojnitest

时间:2024-10-25 11:16:40浏览次数:3  
标签:16 bytes uint8 len hellojnitest msg append

新建项目

新建一个Kotlin项目,项目名字hellojnitest
在cpp目录下新建一个Biletion.c文件
里面如下添加内容

#include <jni.h>

JNIEXPORT jstring JNICALL
Java_com_example_hellojnitest_MainActivity_stringFromJNI(JNIEnv* env, jobject obj) {
    const char* hello = "Hello from JNI.";
    return (*env)->NewStringUTF(env,hello);
}

修改cMakeLists.txt中的内容

add_library(
        Bileton # 想要构建的库的名字
        SHARED
        Bileton.c # 加载的源文件)
target_link_libraries(
        Bileton # 想要链接库的目标名称
        android
        log)

修改System.loadLibrary(“xxx”)

System.loadLibrary("Bileton")

Run,可以正常运行
在这里插入图片描述

调试

Bileton.c中添加代码

#include <jni.h>
#include <android/log.h>

JNIEXPORT jstring JNICALL
Java_com_example_hellojnitest_MainActivity_stringFromJNI(JNIEnv* env, jobject obj) {
    const char* hello = "Hello from JNI.";
    int i , sum = 0;
    i=1;
    while (i<=10){
        sum+=i;
        i++;
        __android_log_print(ANDROID_LOG_INFO,"Bileton","now sum is %d",sum);
    }
    return (*env)->NewStringUTF(env,hello);
}

Run,在日志信息里有如下内容
在这里插入图片描述
sum+=i处打断点,然后调试
step over(F8)单步步过,执行到下一行,如果是函数,会跳过函数。
step into(F7)单步步入,执行到下一行,如果是函数,会进入函数。
step out(Shift + F7)单步步出,跳出函数。
在这里插入图片描述

MD5

Github中的源码https://github.com/pod32g/MD5
我在这里也附上源码

/*
 * Simple MD5 implementation
 *
 * Compile with: gcc -o md5 md5.c
 */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
 
// Constants are the integer part of the sines of integers (in radians) * 2^32.
const uint32_t k[64] = {
0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee ,
0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501 ,
0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be ,
0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821 ,
0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa ,
0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8 ,
0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed ,
0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a ,
0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c ,
0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70 ,
0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05 ,
0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665 ,
0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039 ,
0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1 ,
0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1 ,
0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 };
 
// r specifies the per-round shift amounts
const uint32_t r[] = {7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22,
                      5,  9, 14, 20, 5,  9, 14, 20, 5,  9, 14, 20, 5,  9, 14, 20,
                      4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23,
                      6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21};
 
// leftrotate function definition
#define LEFTROTATE(x, c) (((x) << (c)) | ((x) >> (32 - (c))))
 
void to_bytes(uint32_t val, uint8_t *bytes)
{
    bytes[0] = (uint8_t) val;
    bytes[1] = (uint8_t) (val >> 8);
    bytes[2] = (uint8_t) (val >> 16);
    bytes[3] = (uint8_t) (val >> 24);
}
 
uint32_t to_int32(const uint8_t *bytes)
{
    return (uint32_t) bytes[0]
        | ((uint32_t) bytes[1] << 8)
        | ((uint32_t) bytes[2] << 16)
        | ((uint32_t) bytes[3] << 24);
}
 
void md5(const uint8_t *initial_msg, size_t initial_len, uint8_t *digest) {
 
    // These vars will contain the hash
    uint32_t h0, h1, h2, h3;
 
    // Message (to prepare)
    uint8_t *msg = NULL;
 
    size_t new_len, offset;
    uint32_t w[16];
    uint32_t a, b, c, d, i, f, g, temp;
 
    // Initialize variables - simple count in nibbles:
    h0 = 0x67452301;
    h1 = 0xefcdab89;
    h2 = 0x98badcfe;
    h3 = 0x10325476;
 
    //Pre-processing:
    //append "1" bit to message    
    //append "0" bits until message length in bits ≡ 448 (mod 512)
    //append length mod (2^64) to message
 
    for (new_len = initial_len + 1; new_len % (512/8) != 448/8; new_len++)
        ;
 
    msg = (uint8_t*)malloc(new_len + 8);
    memcpy(msg, initial_msg, initial_len);
    msg[initial_len] = 0x80; // append the "1" bit; most significant bit is "first"
    for (offset = initial_len + 1; offset < new_len; offset++)
        msg[offset] = 0; // append "0" bits
 
    // append the len in bits at the end of the buffer.
    to_bytes(initial_len*8, msg + new_len);
    // initial_len>>29 == initial_len*8>>32, but avoids overflow.
    to_bytes(initial_len>>29, msg + new_len + 4);
 
    // Process the message in successive 512-bit chunks:
    //for each 512-bit chunk of message:
    for(offset=0; offset<new_len; offset += (512/8)) {
 
        // break chunk into sixteen 32-bit words w[j], 0 ≤ j ≤ 15
        for (i = 0; i < 16; i++)
            w[i] = to_int32(msg + offset + i*4);
 
        // Initialize hash value for this chunk:
        a = h0;
        b = h1;
        c = h2;
        d = h3;
 
        // Main loop:
        for(i = 0; i<64; i++) {
 
            if (i < 16) {
                f = (b & c) | ((~b) & d);
                g = i;
            } else if (i < 32) {
                f = (d & b) | ((~d) & c);
                g = (5*i + 1) % 16;
            } else if (i < 48) {
                f = b ^ c ^ d;
                g = (3*i + 5) % 16;          
            } else {
                f = c ^ (b | (~d));
                g = (7*i) % 16;
            }
 
            temp = d;
            d = c;
            c = b;
            b = b + LEFTROTATE((a + f + k[i] + w[g]), r[i]);
            a = temp;
 
        }
 
        // Add this chunk's hash to result so far:
        h0 += a;
        h1 += b;
        h2 += c;
        h3 += d;
 
    }
 
    // cleanup
    free(msg);
 
    //var char digest[16] := h0 append h1 append h2 append h3 //(Output is in little-endian)
    to_bytes(h0, digest);
    to_bytes(h1, digest + 4);
    to_bytes(h2, digest + 8);
    to_bytes(h3, digest + 12);
}
 
int main(int argc, char **argv) {
    char *msg;
    size_t len;
    int i;
    uint8_t result[16];
 
    if (argc < 2) {
        printf("usage: %s 'string'\n", argv[0]);
        return 1;
    }
    msg = argv[1];
 
    len = strlen(msg);
 
    // benchmark
    for (i = 0; i < 1000000; i++) {
        md5((uint8_t*)msg, len, result);
    }
 
    // display result
    for (i = 0; i < 16; i++)
        printf("%2.2x", result[i]);
    puts("");
 
    return 0;
}

编译MD5

kali里面自带有gcc编译器,所以这里我使用kali来编译了
在这里插入图片描述
通过file查看md5程序的文件类型,根据输出的结果可以看出,是一个64位的ELF文件,架构类型是x86-64,只能运行在x86-64架构的计算机上。
在这里插入图片描述

编译一个可以在arm64架构上面运行的md5

交叉编译,官方文档https://developer.android.google.cn/ndk/guides/other_build_systems?hl=en
ndk的目录在Sdk目录下
ndk目录下有ndk/26.1.10909125/toolchains/llvm/prebuilt/linux-x86_64/bin,这里的bin目录下就是一堆编译器,这里我使用的是aarch64-linux-android28
在这里插入图片描述
/root/Android/Sdk/ndk/26.1.10909125/toolchains/llvm/prebuilt/linux-x86_64/bin/clang --target=aarch64-linux-android28 md5.c -o arm64_md5
编译好后,查看其文件类型,支持的架构是ARM aarch64,只能在arm64上运行
在这里插入图片描述
把它push到ARM机子上在这里插入图片描述
运行一下,看结果,没毛病。
在这里插入图片描述
把clang添加到环境变量
echo 'export PATH="/root/Android/Sdk/ndk/26.1.10909125/toolchains/llvm/prebuilt/linux-x86_64/bin/:$PATH"' >> ~/.bashrc
然后用vim ~/.bashrc查看一下确认内容是否正确
source ~/.bashrc使环境变量生效
执行命令clang --version查看clang的版本号,有输出结果,说明配置的环境变量生效了
在这里插入图片描述

把md5添加到app中

MainActivity中使用external关键字声明native函数external fun hexmd5(data:String): String
Bileton.c文件中对hexmd5函数进行实现

#include <jni.h>
#include <android/log.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>

// Constants are the integer part of the sines of integers (in radians) * 2^32.
const uint32_t k[64] = {
        0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee ,
        0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501 ,
        0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be ,
        0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821 ,
        0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa ,
        0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8 ,
        0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed ,
        0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a ,
        0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c ,
        0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70 ,
        0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05 ,
        0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665 ,
        0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039 ,
        0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1 ,
        0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1 ,
        0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 };

// r specifies the per-round shift amounts
const uint32_t r[] = {7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22,
                      5,  9, 14, 20, 5,  9, 14, 20, 5,  9, 14, 20, 5,  9, 14, 20,
                      4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23,
                      6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21};

// leftrotate function definition
#define LEFTROTATE(x, c) (((x) << (c)) | ((x) >> (32 - (c))))

void to_bytes(uint32_t val, uint8_t *bytes)
{
    bytes[0] = (uint8_t) val;
    bytes[1] = (uint8_t) (val >> 8);
    bytes[2] = (uint8_t) (val >> 16);
    bytes[3] = (uint8_t) (val >> 24);
}

uint32_t to_int32(const uint8_t *bytes)
{
    return (uint32_t) bytes[0]
           | ((uint32_t) bytes[1] << 8)
           | ((uint32_t) bytes[2] << 16)
           | ((uint32_t) bytes[3] << 24);
}

void md5(const uint8_t *initial_msg, size_t initial_len, uint8_t *digest) {

    // These vars will contain the hash
    uint32_t h0, h1, h2, h3;

    // Message (to prepare)
    uint8_t *msg = NULL;

    size_t new_len, offset;
    uint32_t w[16];
    uint32_t a, b, c, d, i, f, g, temp;

    // Initialize variables - simple count in nibbles:
    h0 = 0x67452301;
    h1 = 0xefcdab89;
    h2 = 0x98badcfe;
    h3 = 0x10325476;

    //Pre-processing:
    //append "1" bit to message
    //append "0" bits until message length in bits ≡ 448 (mod 512)
    //append length mod (2^64) to message

    for (new_len = initial_len + 1; new_len % (512/8) != 448/8; new_len++)
        ;

    msg = (uint8_t*)malloc(new_len + 8);
    memcpy(msg, initial_msg, initial_len);
    msg[initial_len] = 0x80; // append the "1" bit; most significant bit is "first"
    for (offset = initial_len + 1; offset < new_len; offset++)
        msg[offset] = 0; // append "0" bits

    // append the len in bits at the end of the buffer.
    to_bytes(initial_len*8, msg + new_len);
    // initial_len>>29 == initial_len*8>>32, but avoids overflow.
    to_bytes(initial_len>>29, msg + new_len + 4);

    // Process the message in successive 512-bit chunks:
    //for each 512-bit chunk of message:
    for(offset=0; offset<new_len; offset += (512/8)) {

        // break chunk into sixteen 32-bit words w[j], 0 ≤ j ≤ 15
        for (i = 0; i < 16; i++)
            w[i] = to_int32(msg + offset + i*4);

        // Initialize hash value for this chunk:
        a = h0;
        b = h1;
        c = h2;
        d = h3;

        // Main loop:
        for(i = 0; i<64; i++) {

            if (i < 16) {
                f = (b & c) | ((~b) & d);
                g = i;
            } else if (i < 32) {
                f = (d & b) | ((~d) & c);
                g = (5*i + 1) % 16;
            } else if (i < 48) {
                f = b ^ c ^ d;
                g = (3*i + 5) % 16;
            } else {
                f = c ^ (b | (~d));
                g = (7*i) % 16;
            }

            temp = d;
            d = c;
            c = b;
            b = b + LEFTROTATE((a + f + k[i] + w[g]), r[i]);
            a = temp;

        }

        // Add this chunk's hash to result so far:
        h0 += a;
        h1 += b;
        h2 += c;
        h3 += d;

    }

    // cleanup
    free(msg);

    //var char digest[16] := h0 append h1 append h2 append h3 //(Output is in little-endian)
    to_bytes(h0, digest);
    to_bytes(h1, digest + 4);
    to_bytes(h2, digest + 8);
    to_bytes(h3, digest + 12);
}


JNIEXPORT jstring JNICALL
Java_com_example_hellojnitest_MainActivity_stringFromJNI(JNIEnv* env, jobject obj) {
    const char* hello = "Hello from JNI.";
    int i , sum = 0;
    i=1;
    while (i<=10){
        sum+=i;
        i++;
        __android_log_print(ANDROID_LOG_INFO,"Bileton","now sum is %d",sum);
    }

    return (*env)->NewStringUTF(env,hello);
}

JNIEXPORT jstring JNICALL
Java_com_example_hellojnitest_MainActivity_hexmd5(JNIEnv *env, jobject thiz,jstring data) {
    // TODO: implement hexmd5()
    char *msg = (*env)->GetStringUTFChars(env,data,NULL);
    char *digest = (char*)malloc(sizeof(char) * 16);
    memset(digest,0,sizeof(digest));
    size_t msg_len = strlen(msg);
    md5(msg,msg_len,digest);
    char *result = (char*) malloc(sizeof(char)*33);
    memset(result,0,sizeof result);
    for (int i = 0; i < 16; ++i) {
        sprintf(result+(i*2),"%02x",digest[i]);
    }

    return (*env)->NewStringUTF(env,result);
}

然后在MainActivity中通过Toast来对hexmd5函数进行调用Toast.makeText(this,hexmd5("Bileton"),Toast.LENGTH_SHORT).show();
在打开app的时候弹出参数的md5值。
在这里插入图片描述

标签:16,bytes,uint8,len,hellojnitest,msg,append
From: https://blog.csdn.net/weixin_74305514/article/details/143196757

相关文章