首页 > 其他分享 >海康威视AI开放平台训练数据集导入问题---解决导入自己数据集的问题(txt转json格式)

海康威视AI开放平台训练数据集导入问题---解决导入自己数据集的问题(txt转json格式)

时间:2024-10-24 11:45:44浏览次数:14  
标签:cereal 22 威视 version --- json 导入 file class

一、问题导入

首先我们先进入到开放平台中,选择物体检测

最近在做一个项目,需要使用到海康威视AI开放平台来训练数据集,但是刚开始遇到了一个问题就是导入自己的数据集(txt格式转成了json格式)为啥没有用,后面查看相关文档,解决了导入自己数据集的问题,就不用在平台里标注了。

二、探索步骤

首先,这里需要下载客户端来使用,在数据服务里创建数据集(具体使用方法可以参考官方文档

接着创建并导入选择本地数据

选择带标签输入

接着点击标注图片会出现小黑框

      就可以进行标注了,最后标注完三四张后我就关闭了小黑框,在图像目录下会自动生成一个json文件,里面就包含标注文件。

三、txt转json格式

     上面讲的内容主要是我一步一步探索的步骤,接下来,我拿到上面小黑框标注好的json文件进行解析,写了一个python脚本。将自己的yolo格式txt格式转换成json格式的文件。下面是所提供的代码

import os
import json
from PIL import Image


def load_classes(classes_file):
    with open(classes_file, 'r', encoding='utf-8') as f:
        return [line.strip() for line in f.readlines()]


def convert_yolo_to_json(labels_dir, images_dir, classes_file, output_json):
    class_names = load_classes(classes_file)

    json_data = {
        "calibInfo": {
            "cereal_class_version": 22,
            "FormatVersion": "1.0",
            "VideoChannels": []
        }
    }

    video_channel = {
        "cereal_class_version": 22,
        "VideoChannelID": 0,
        "VideoChanInfo": {
            "cereal_class_version": 22,
            "Description": ""
        },
        "MediaInfo": {
            "cereal_class_version": 22,
            "MediaType": 3,
            "FilePath": images_dir,
            "FileTime": 0,
            "FrameNum": 0,
            "FrameWidth": -1,
            "FrameHeight": -1,
            "breakFrameNum": ""
        },
        "BasicConfig": {
            "cereal_class_version": 22,
            "AlgorithmValue": 1,
            "EventValue": 1,
            "FrameStepLength": 10,
            "MinObjWidth": 10,
            "MinObjHeight": 10
        },
        "GeneralTag": {
            "cereal_class_version": 22,
            "SceneType": -1,
            "Weather": ""
        },
        "VideoInfo": {
            "cereal_class_version": 22,
            "MainTagPage": {
                "cereal_class_version": 22,
                "PropertyPageName": "",
                "PropertyPageDescript": "",
                "TagGroups": [],
                "IsDisplay": ""
            },
            "mapFrameInfos": []
        },
        "VideoChanEvents": []
    }

    for label_file in os.listdir(labels_dir):
        if label_file.endswith('.txt'):
            image_file = label_file.replace('.txt', '.jpg')
            image_path = os.path.join(images_dir, image_file)
            label_path = os.path.join(labels_dir, label_file)

            if os.path.exists(image_path):
                with Image.open(image_path) as img:
                    width, height = img.size

                video_channel["MediaInfo"]["FrameWidth"] = width
                video_channel["MediaInfo"]["FrameHeight"] = height
                video_channel["MediaInfo"]["breakFrameNum"] = image_file

                # Initialize mapFrameInfo
                map_frame_info = {
                    "key": {
                        "cereal_class_version": 22,
                        "FrameNum": image_file,
                        "MediaType": 3
                    },
                    "value": {
                        "cereal_class_version": 22,
                        "FrameNum": image_file,
                        "TimeStamp": 0,
                        "OsdTime": 0,
                        "mapRules": [],
                        "mapTargets": [],
                        "mapFrameEvents": [],
                        "PropertyPages": []
                    }
                }

                with open(label_path, 'r') as f:
                    for line in f.readlines():
                        class_id, x_center, y_center, width_ratio, height_ratio = map(float, line.strip().split())
                        class_name = class_names[int(class_id)]

                        x1 = (x_center - width_ratio / 2) * width
                        y1 = (y_center - height_ratio / 2) * height
                        x2 = (x_center + width_ratio / 2) * width
                        y2 = (y_center + height_ratio / 2) * height

                        target_info = {
                            "key": len(map_frame_info["value"]["mapTargets"]) + 1,
                            "value": {
                                "TargetID": len(map_frame_info["value"]["mapTargets"]) + 1,
                                "TargetType": 1,
                                "Vertex": [
                                    {"cereal_class_version": 22, "fX": x1 / width, "fY": y1 / height},
                                    {"cereal_class_version": 22, "fX": x2 / width, "fY": y1 / height},
                                    {"cereal_class_version": 22, "fX": x2 / width, "fY": y2 / height},
                                    {"cereal_class_version": 22, "fX": x1 / width, "fY": y2 / height}
                                ],
                                "PropertyPages": [
                                    {
                                        "PropertyPageName": str(class_id + 1),
                                        "PropertyPageDescript": class_name,
                                        "TagGroups": [],
                                        "IsDisplay": "1"
                                    }
                                ]
                            }
                        }
                        map_frame_info["value"]["mapTargets"].append(target_info)

                video_channel["VideoInfo"]["mapFrameInfos"].append(map_frame_info)

    json_data["calibInfo"]["VideoChannels"].append(video_channel)

    with open(output_json, 'w', encoding='utf-8') as json_file:
        json.dump(json_data, json_file, ensure_ascii=False, indent=4)

        print(f"转换完成,JSON文件已保存到 {output_json}")


labels_dir = r"E:\Users\Administrator\Desktop\test\train\labels"
images_dir = r"E:\Users\Administrator\Desktop\test\train\images"
classes_file = r"E:\Users\Administrator\Desktop\test\train\classes.txt"
output_json = r"E:\Users\Administrator\Desktop\test\train\merged_output.json"

convert_yolo_to_json(labels_dir, images_dir, classes_file, output_json)

只需要替换上面四个文件的目录,第一个目录我labels目录(txt文件),第二个目录是图像目录(训练图像文件),第三个是标签类别文件,第四个是输出的json文件。最后在训练图像目录下创建一个Result文件夹,将json文件移动到此文件下,接着在海康威视训练平台上回到下面这个界面,点击导入带标签文件,把json文件传入即可导入自己的数据集了。

标签:cereal,22,威视,version,---,json,导入,file,class
From: https://blog.csdn.net/weixin_51971381/article/details/143201538

相关文章