首页 > 其他分享 >Towards Explainable Traffic Flow Prediction with Large Language Models

Towards Explainable Traffic Flow Prediction with Large Language Models

时间:2024-10-21 13:20:33浏览次数:7  
标签:hours Towards Language Models 模型 volume 12 Traffic traffic

<s>[INST]<<SYS>>
Role: You are an expert traffic volume prediction model, that can predict the future volume values according to spatial temporal information. We want you to perform the traffic volume prediction task, considering the nearby environment and historical traffic volume data.

Context knowledge you could consider:
    - Traffic volume: the number of vehicles passing a specific region in an hour, usually ranging from 0 to 1000.
    - Traffic pattern characteristic: Traffic flow patterns in a city are influenced by various area attributes. Also, traffic volume has a periodic daily and weekly pattern.
    - Spatial temporal factors correlation: Traffic flow in an area will be affected by its nearby infrastructures, during specific periods for different areas. You should think about how the volume will change in a specific area, during a specific time.
      For examples,
            Airports, and train stations - increased volume on weekends and holidays.
            Residential areas - more activities during morning and evening rush hours.
            Commercial areas - busy during lunch hours and after-work periods.
            Educational locations - high volume during peak hours near schools.

Think carefully about the following questions about how spatial-temporal factors affect traffic flow.
    - What is the attribute of this area and what is the predicted time zone located in special periods (like rush hours, weekdays, weekends, and holidays)?
    - What are the traffic patterns of this area, and what is the change in different time slots?
    - What is the historical temporal trend according to temporal information, considering the weekdays, around holidays?
<<\/SYS>>

Some important information is listed as follows:
    - Location: District 3 in Yolo, California, USA, along the US50-E freeway, lane 4, direction of eastbound. 
    - Today's weather: Sunny. Temperature is 6.0°C, and visibility reaches 10.0 miles. 
    - Region information: including transportation areas, commercial areas and educational areas within a range of 5 km.
    - Current Time: 3 PM, 2018-2-19, Monday, Washington's Birthday.
    - Traffic volume data in the past 12 hours were 19, 44, 98, 150, 156, 178, 208, 246, 248, 257, 263 and 269, respectively.

According to the above information and careful reasoning, please predict traffic volumes in the next 12 hours (from 4 PM to 3 AM). Format the final answer in a single line as a JSON dictionary like: {Traffic volume data in the next 12 hours: [V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12]}.[\/INST]

{Traffic volume data in the next 12 hours: [262, 229, 221, 214, 152, 127, 100, 58, 38, 25, 22, 18]}.
<\/s>

拆分内容的解释

  1. 标记和说明

    • <s></s>:表示文本的起始和结束,这是模型输入/输出常见的格式。
    • [INST]:指明这是一个指令输入,模型根据这里的指令执行任务。
    • <<SYS>><<\/SYS>>:系统提示的开始和结束,定义了模型任务的背景和要求。
  2. 系统提示 (<<SYS>>...<<\/SYS>>)

    • 任务角色:明确模型是一个专家交通量预测模型。
    • 背景知识
      • 交通量:每小时通过特定区域的车辆数量,通常范围为 0 到 1000。
      • 交通模式特性:交通流量受到城市不同区域特征的影响,并具有日常和每周的周期性。
      • 空间-时间因素相关性:交通流量会受到附近基础设施和特定时间段的影响,并举了一些例子(机场、居民区、商业区和教育区等)。
    • 思考方向:提示模型在做出预测时需要考虑的因素,包括区域特征、时间段、历史交通模式等。
  3. 具体输入信息

    • 位置:加州尤洛地区第三区,沿 US50-E 高速公路,东向的 4 号车道。
    • 天气:晴天,温度为 6°C,能见度 10 英里。
    • 区域信息:周围 5 公里范围内包括交通区、商业区和教育区。
    • 当前时间:2018 年 2 月 19 日,星期一,华盛顿诞辰纪念日,下午 3 点。
    • 过去 12 小时的交通量数据:19, 44, 98, 150, 156, 178, 208, 246, 248, 257, 263, 269。
  4. 模型任务指令

    • 任务:根据以上信息和合理推理,预测未来 12 小时的交通量(从下午 4 点到凌晨 3 点)。
    • 输出格式要求:模型输出应是一个 JSON 字典,格式如 {Traffic volume data in the next 12 hours: [V1, V2, ..., V12]}
  5. 模型输出结果

    • {Traffic volume data in the next 12 hours: [262, 229, 221, 214, 152, 127, 100, 58, 38, 25, 22, 18]}:这是模型根据输入信息预测的未来 12 小时交通量数据。

总结

这个数据结构化地展示了模型如何接收指令和输入信息,并根据这些信息生成预测结果。通过给定的上下文背景、历史交通数据和其他相关信息,模型进行合理推理,输出预测的交通量变化趋势。

标签:hours,Towards,Language,Models,模型,volume,12,Traffic,traffic
From: https://www.cnblogs.com/csjywu01/p/18489289

相关文章

  • Adapting Open-Source Large Language Models for Cost-Effective, Expert-Level Clin
    本文是LLM系列文章,针对《AdaptingOpen-SourceLargeLanguageModelsforCost-Effective,Expert-LevelClinicalNoteGenerationwithOn-PolicyReinforcementLearning》的翻译。采用开源大型语言模型,通过策略强化学习生成经济高效的专家级临床笔记摘要1引言2......
  • A review on the use of large language models as virtual tutors
    本文是LLM系列文章,针对《Areviewontheuseoflargelanguagemodelsasvirtualtutors》的翻译。关于使用大型语言模型作为虚拟导师的综述摘要1引言2方法3分析和讨论4结论摘要Transformer架构有助于管理自然语言处理的长期依赖关系,这是该领域的最新......
  • 乘风破浪,扬帆出海,Praxis Language旗下基于播客形式的英语学习平台之English Pod 365
    什么是EnglishPod365EnglishPod365是PraxisLanguage旗下的一款英语学习平台。PraxisLanguage是一家教育技术公司,专门开发基于播客(podcast)形式的语言学习平台,除了EnglishPod,他们还开发了类似的语言学习产品,如ChinesePod、SpanishPod和FrenchPod等。EnglishPod365是......
  • 第四届教育,语言与艺术国际学术会议 2024 4th International Conference on Education,
    文章目录一、会议详情二、重要信息三、大会介绍四、出席嘉宾五、征稿主题六、咨询一、会议详情二、重要信息大会官网:https://ais.cn/u/vEbMBz提交检索:EICompendex、IEEEXplore、Scopus三、大会介绍第四届教育,语言与艺术国际学术会议(ICELA2024)将于2024年11月2......
  • Denoising Diffusion Implicit Models(去噪隐式模型)
    DDPM有一个很麻烦的问题,就是需要迭代很多步,十分耗时。有人提出了一些方法,比如one-stepdm等等。较著名、也比较早的是DDIM。原文:https://arxiv.org/pdf/2010.02502参考博文:https://zhuanlan.zhihu.com/p/666552214?utm_id=0 DDIM假设 DM假设ddim给出了一个新的扩散假设,结......
  • OpenCity: Open Spatio-Temporal Foundation Models for Traffic Prediction
    1.数据准备在这个数据处理过程中,以数据集PEMS07M为例,整个数据抽取和划分过程如下:初始数据维度:原始训练数据data_train的维度为(12672,228,3)。其中:12672表示时间步数,代表不同的时间点采样的数据。228表示空间节点数(例如不同的交通站点)。3表示每个节点在每个......
  • Survey on Reasoning Capabilities and Accessibility of Large Language Models Usin
    本文是LLM系列文章,针对《SurveyonReasoningCapabilitiesandAccessibilityofLargeLanguageModelsUsingBiology-relatedQuestions》的翻译。使用生物学相关问题对大型语言模型的推理能力和可访问性的调查摘要1引言2相关工作3方法4结果5讨论结论......
  • OmniGenBench: Automating Large-scale in-silico Benchmarking for Genomic Foundati
    本文是LLM系列文章,针对《OmniGenBench:AutomatingLarge-scalein-silicoBenchmarkingforGenomicFoundationModels》的翻译。OmniGenBench:基因组基础模型的大规模计算机基准测试自动化摘要1引言2OmniGenBench3基准结果4相关工作5结论摘要近年来人......