目录
一、排序的概念及其应用
1.1.概念
排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。
内部排序:数据元素全部放在内存中的排序。
外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。
1.2.应用
一、常见的排序算法
二、七大排序
1.直接插入排序
当我们斗地主的时候,是不是经常把手里的牌都按升序或者降序的方式排列?插入排序也是如此,拿升序来说,只要后面的某个元素(tmp)小于前面的元素,就把它(tmp)一直往前移动,直到前面的元素小于它(tmp),就是它(tmp)要插入的位置。如图:
依次类推:
void PrintArray(int* a, int n)
{
for (int i = 0; i < n; i++)
{
printf("%d ", a[i]);
}
printf("\n");
}
//直接插入排序
void InsertSort(int* a, int n)
{
assert(a);
for (int i = 0; i < n - 1; i++)
{
int end = i;
int tmp = a[end + 1];
while (end >= 0)
{
if (a[end] > tmp)
{
a[end + 1] = a[end];
--end;
}
else
{
break;
}
}
a[end + 1] = tmp;
}
}
void TestInsertSort()
{
int a[] = { 3,44,38,5,47,15,36,26,27,2,46,4,19,50,48 };
InsertSort(a, sizeof(a)/sizeof(int));
PrintArray(a, sizeof(a) / sizeof(int));
}
int main()
{
TestInsertSort();
return 0;
}
注意InsertSort函数里面的第一个函数,为什么是n-1?如果写成n的话,是会报错的。那就要理解直接插入的本质了。[ 0, end] 插入,[0, end + 1] 有序,怎么去理解呢?end是在前面遍历的,然后与end + 1 去比较,如果end = n - 1 了,那么end = n ,则就溢出了,所以Stack around the variable 'a' wascorrupted。
特性: 1. 元素集合越接近有序,直接插入排序算法的时间效率越高 2. 时间复杂度: O(N^2) 3. 空间复杂度: O(1) ,它是一种稳定的排序算法 4. 稳定性:稳定2.希尔排序
希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成个组,所有距离为的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重复上述分组和排序的工作。当到达=1时,所有记录在统一组内排好序。
//void ShellSort(int* a, int n)
//{
//int gap = 3;
//for (int j = 0; j < gap; ++j)
//{
// for (int i = j; i < n - gap; i += gap)
// {
// // [0,end] 插入 end+gap [0, end+gap]有序 -- 间隔为gap的数据
// int end = i;
// int tmp = a[end + gap];
// while (end >= 0)
// {
// if (a[end] > tmp)
// {
// a[end + gap] = a[end];
// end -= gap;
// }
// else
// {
// break;
// }
// }
// a[end + gap] = tmp;
// }
//}
// gap > 1 预排序
// gap == 1 直接插入排序
// O(N^1.3)
void ShellSort(int* a, int n)
{
int gap = n;
while (gap > 1)
{
//gap = gap / 2;
gap = gap / 3 + 1;
// [0,end] 插入 end+gap [0, end+gap]有序 -- 间隔为gap的数据
for (int i = 0; i < n - gap; ++i)
{
int end = i;
int tmp = a[end + gap];
while (end >= 0)
{
if (a[end] > tmp)
{
a[end + gap] = a[end];
end -= gap;
}
else
{
break;
}
}
a[end + gap] = tmp;
}
}
}
特性:
- 1. 希尔排序是对直接插入排序的优化。
- 2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
- 3. 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些树中给出的希尔排序的时间复杂度都不稳定。
3.选择排序
基本思想:
1.每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完 。
2.在元素集合array[i]--array[n-1]中选择关键码最大(小)的数据元素
3.若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素交换
4.在剩余的array[i]--array[n-2](array[i+1]--array[n-1])集合中,重复上述步骤,直到集合剩余1个元素。
void Swap(int* p1, int* p2)
{
int tmp = *p1;
*p1 = *p2;
*p2 = tmp;
}
// 最坏时间复杂度:O(N^2)
// 最好时间复杂度:O(N^2)
void SelectSort(int* a, int n)
{
int begin = 0, end = n - 1;
while (begin < end)
{
// 选出最小的放begin位置
// 选出最大的放end位置
int mini = begin, maxi = begin;
for (int i = begin + 1; i <= end; ++i)
{
if (a[i] > a[maxi])
{
maxi = i;
}
if (a[i] < a[mini])
{
mini = i;
}
}
Swap(&a[begin], &a[mini]);
// 修正一下maxi
if (maxi == begin)
maxi = mini;
Swap(&a[end], &a[maxi]);
++begin;
--end;
}
}
特性:
1.
直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用。
2.
时间复杂度:
O(N^2)
3.
空间复杂度:
O(1)
4.
稳定性:不稳定
4.堆排序
堆排序 (Heapsort) 是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。void Swap(int* p1, int* p2)
{
int tmp = *p1;
*p1 = *p2;
*p2 = tmp;
}
void AdjustDown(int* a, int n, int parent)
{
int minChild = parent * 2 + 1;
while (minChild < n)
{
// 找出小的那个孩子
if (minChild + 1 < n && a[minChild + 1] > a[minChild])
{
minChild++;
}
if (a[minChild] > a[parent])
{
Swap(&a[minChild], &a[parent]);
parent = minChild;
minChild = parent * 2 + 1;
}
else
{
break;
}
}
}
// O(N*logN)
void HeapSort(int* a, int n)
{
// 大思路:选择排序,依次选数,从后往前排
// 升序 -- 大堆
// 降序 -- 小堆
// 建堆 -- 向下调整建堆 - O(N)
for (int i = (n - 1 - 1) / 2; i >= 0; --i)
{
AdjustDown(a, n, i);
}
// 选数 N*logN
int i = 1;
while (i < n)
{
Swap(&a[0], &a[n - i]);
AdjustDown(a, n - i, 0);
++i;
}
}
直接选择排序的特性总结:
1.
堆排序使用堆来选数,效率就高了很多。
2.
时间复杂度:
O(N*logN)
3.
空间复杂度:
O(1)
4.
稳定性:不稳定
5.冒泡排序
// 最坏情况:O(N^2)
// 最好情况:O(N)
void BubbleSort(int* a, int n)
{
for (int j = 0; j < n; ++j)
{
int exchange = 0;
for (int i = 1; i < n - j; ++i)
{
if (a[i - 1] > a[i])
{
Swap(&a[i - 1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
{
break;
}
}
}
6.快速排序
快速排序是 Hoare 于 1962 年提出的一种二叉树结构的交换排序方法,其基本思想为: 任取待排序元素序列中 的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右 子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止 。// 假设按照升序对array数组中[left, right)区间中的元素进行排序
void QuickSort(int array[], int left, int right)
{
if(right - left <= 1)
return;
// 按照基准值对array数组的 [left, right)区间中的元素进行划分
int div = partion(array, left, right);
// 划分成功后以div为边界形成了左右两部分 [left, div) 和 [div+1, right)
// 递归排[left, div)
QuickSort(array, left, div);
// 递归排[div+1, right)
QuickSort(array, div+1, right);
}
上述为快速排序递归实现的主框架,发现与二叉树前序遍历规则非常像,同学们在写递归框架时可想想二叉树前序遍历规则即可快速写出来,后序只需分析如何按照基准值来对区间中数据进行划分的方式即可。
将区间按照基准值划分为左右两半部分的常见方式有:
6.1.hoare
// [left, right] -- O(N)
// hoare
int PartSort1(int* a, int left, int right)
{
// 三数取中
int mid = GetMidIndex(a, left, right);
//printf("[%d,%d]-%d\n", left, right, mid);
Swap(&a[left], &a[mid]);
int keyi = left;
while (left < right)
{
// 6 6 6 6 6
// R找小
while (left < right && a[right] >= a[keyi])
{
--right;
}
// L找大
while (left < right && a[left] <= a[keyi])
{
++left;
}
if (left < right)
Swap(&a[left], &a[right]);
}
int meeti = left;
Swap(&a[meeti], &a[keyi]);
return meeti;
}
6.2.挖坑法
// 挖坑法
int PartSort2(int* a, int left, int right)
{
// 三数取中
int mid = GetMidIndex(a, left, right);
Swap(&a[left], &a[mid]);
int key = a[left];
int hole = left;
while (left < right)
{
// 右边找小,填到左边坑
while (left < right && a[right] >= key)
{
--right;
}
a[hole] = a[right];
hole = right;
// 左边找大,填到右边坑
while (left < right && a[left] <= key)
{
++left;
}
a[hole] = a[left];
hole = left;
}
a[hole] = key;
return hole;
}
6.3.前后指针
// 前后指针法
int PartSort3(int* a, int left, int right)
{
// 三数取中
int mid = GetMidIndex(a, left, right);
Swap(&a[left], &a[mid]);
int keyi = left;
int prev = left;
int cur = left + 1;
while (cur <= right)
{
// 找小
if (a[cur] < a[keyi] && ++prev != cur)
Swap(&a[cur], &a[prev]);
++cur;
}
Swap(&a[keyi], &a[prev]);
return prev;
}
特性:
1. 快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫 快速 排序 2. 时间复杂度: O(N*logN) 3. 空间复杂度: O(logN) 4. 稳定性:不稳定6.4.优化三数取中
int GetMidIndex(int* a, int left, int right)
{
int mid = left + (right - left) / 2;
if (a[left] < a[mid])
{
if (a[mid] < a[right])
{
return mid;
}
else if (a[left] > a[right])
{
return left;
}
else
{
return right;
}
}
else // a[left] >= a[mid]
{
if (a[mid] > a[right])
{
return mid;
}
else if (a[left] < a[right])
{
return left;
}
else
{
return right;
}
}
}
7.归并排序
归并排序 是建立在归并操作上的一种有效的排序算法 ,该算法是采用分治法的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。归并排序核心步骤:void _MergeSort(int* a, int begin, int end, int* tmp)
{
if (begin >= end)
return;
int mid = (end + begin) / 2;
// [begin, mid] [mid+1, end]
_MergeSort(a, begin, mid, tmp);
_MergeSort(a, mid+1, end, tmp);
// 归并 取小的尾插
// [begin, mid] [mid+1, end]
int begin1 = begin, end1 = mid;
int begin2 = mid+1, end2 = end;
int i = begin;
while (begin1 <= end1 && begin2 <= end2)
{
if (a[begin1] <= a[begin2])
{
tmp[i++] = a[begin1++];
}
else
{
tmp[i++] = a[begin2++];
}
}
while (begin1 <= end1)
{
tmp[i++] = a[begin1++];
}
while (begin2 <= end2)
{
tmp[i++] = a[begin2++];
}
// 拷贝回原数组 -- 归并哪部分就拷贝哪部分回去
memcpy(a+begin, tmp+begin, (end-begin+1)*sizeof(int));
}
void MergeSort(int* a, int n)
{
int* tmp = (int*)malloc(sizeof(int)*n);
if (tmp == NULL)
{
perror("malloc fail");
return;
}
_MergeSort(a, 0, n - 1, tmp);
free(tmp);
tmp = NULL;
}
void MergeSortNonR(int* a, int n)
{
int* tmp = (int*)malloc(sizeof(int)*n);
if (tmp == NULL)
{
perror("malloc fail");
return;
}
int gap = 1;
while (gap < n)
{
// gap个数据 gap个数据归并
for (int j = 0; j < n; j += 2 * gap)
{
// 归并 取小的尾插
int begin1 = j, end1 = j + gap - 1;
int begin2 = j + gap, end2 = j + 2 * gap - 1;
// 第一组越界
if (end1 >= n)
{
printf("[%d,%d]", begin1, n-1);
break;
}
// 第二组全部越界
if (begin2 >= n)
{
printf("[%d,%d]", begin1, end1);
break;
}
// 第二组部分越界
if (end2 >= n)
{
// 修正一下end2,继续归并
end2 = n - 1;
}
printf("[%d,%d][%d,%d] ", begin1, end1, begin2, end2);
int i = j;
while (begin1 <= end1 && begin2 <= end2)
{
if (a[begin1] <= a[begin2])
{
tmp[i++] = a[begin1++];
}
else
{
tmp[i++] = a[begin2++];
}
}
while (begin1 <= end1)
{
tmp[i++] = a[begin1++];
}
while (begin2 <= end2)
{
tmp[i++] = a[begin2++];
}
// 拷贝回原数组 -- 归并哪部分就拷贝哪部分回去
memcpy(a+j, tmp+j, (end2-j+1)*sizeof(int));
}
gap *= 2;
printf("\n");
}
free(tmp);
tmp = NULL;
}
特性:
1. 归并的缺点在于需要 O(N) 的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。 2. 时间复杂度: O(N*logN) 3. 空间复杂度: O(N) 4. 稳定性:稳定 标签:right,end,int,gap,撕七大,排序,left From: https://blog.csdn.net/2201_75956982/article/details/143053292