首页 > 其他分享 >Hadoop3.X高可用环境搭建

Hadoop3.X高可用环境搭建

时间:2024-10-17 23:43:31浏览次数:6  
标签:10 hadoop153 可用 hadoop yinzhengjie hadoop151 搭建 root Hadoop3

目录

一.基础环境准备

1.角色分配

主机名 IP地址 硬件配置 角色说明 备注
hadoop151 10.0.0.151 2Core/4GB/50GB+ NN,DN,ZKFC,JN,RM,NM zookeeper,Hadoop,JDK环境
hadoop152 10.0.0.152 2Core/4GB/50GB+ DN,JN,RM,NM zookeeper,Hadoop,JDK环境
hadoop153 10.0.0.153 2Core/4GB/50GB+ NN,DN,ZKFC,JN,RM,NM zookeeper,Hadoop,JDK环境

2.准备软件源

[root@hadoop151 ~]# cat /etc/apt/sources.list
deb https://mirrors.aliyun.com/ubuntu/ jammy main restricted universe multiverse
deb-src https://mirrors.aliyun.com/ubuntu/ jammy main restricted universe multiverse

deb https://mirrors.aliyun.com/ubuntu/ jammy-security main restricted universe multiverse
deb-src https://mirrors.aliyun.com/ubuntu/ jammy-security main restricted universe multiverse

deb https://mirrors.aliyun.com/ubuntu/ jammy-updates main restricted universe multiverse
deb-src https://mirrors.aliyun.com/ubuntu/ jammy-updates main restricted universe multiverse

deb https://mirrors.aliyun.com/ubuntu/ jammy-backports main restricted universe multiverse
deb-src https://mirrors.aliyun.com/ubuntu/ jammy-backports main restricted universe multiverse
[root@hadoop151 ~]# 



参考链接:
	https://developer.aliyun.com/mirror/ubuntu
	
	
温馨提示:
	对于阿里云ECS用户,需要将配置文件中 https://mirrors.aliyun.com/ 替换成 http://mirrors.cloud.aliyuncs.com/ 进行使用。
	
	sed -i 's/https:\/\/mirrors.aliyun.com/http:\/\/mirrors.cloud.aliyuncs.com/g' /etc/apt/sources.list

3.部署JDK环境

	1.创建工作目录
[root@hadoop151 ~]# mkdir -pv /yinzhengjie/softwares
 
	2.解压软件包
[root@hadoop151 ~]# tar xf jdk-8u291-linux-x64.tar.gz -C /yinzhengjie/softwares

	3.配置环境变量
[root@hadoop151 ~]# cat /etc/profile.d/jdk.sh
#!/bin/bash
 
export JAVA_HOME=/yinzhengjie/softwares/jdk1.8.0_291
export PATH=$PATH:$JAVA_HOME/bin
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
[root@hadoop151 ~]# 

	4.加载环境变量
[root@hadoop151 ~]# source /etc/profile.d/jdk.sh
[root@hadoop151 ~]#   

	5.验证环境是否部署成功
[root@hadoop151 ~]# java -version
java version "1.8.0_291"
Java(TM) SE Runtime Environment (build 1.8.0_291-b10)
Java HotSpot(TM) 64-Bit Server VM (build 25.291-b10, mixed mode)
[root@hadoop151 ~]# 

	
温馨提示:
	所有节点都需要安装JDK环境哟~
	
[root@hadoop152 ~]# source  /etc/profile.d/jdk.sh 
[root@hadoop152 ~]# java -version
java version "1.8.0_291"
Java(TM) SE Runtime Environment (build 1.8.0_291-b10)
Java HotSpot(TM) 64-Bit Server VM (build 25.291-b10, mixed mode)
[root@hadoop152 ~]# 


[root@hadoop153 ~]# source  /etc/profile.d/jdk.sh
[root@hadoop153 ~]# java -version
java version "1.8.0_291"
Java(TM) SE Runtime Environment (build 1.8.0_291-b10)
Java HotSpot(TM) 64-Bit Server VM (build 25.291-b10, mixed mode)
[root@hadoop153 ~]# 

4.配置host文件解析

[root@hadoop151 ~]# cat >> /etc/hosts <<EOF
10.0.0.151 hadoop151
10.0.0.152 hadoop152
10.0.0.153 hadoop153
EOF

5.配置ssh免密登录

	1.更新apt软件源
[root@hadoop151 ~]# apt update

	2.安装expect软件包
[root@hadoop151 ~]# apt -y install expect

	3.配置免密登录
[root@hadoop151 ~]# cat > password_free_login.sh <<'EOF'
#!/bin/bash
# auther: Jason Yin

# 创建密钥对
ssh-keygen -t rsa -P "" -f /root/.ssh/id_rsa -q

# 声明你服务器密码,建议所有节点的密码均一致,否则该脚本需要再次进行优化
export mypasswd=yinzhengjie

# 定义主机列表
hadoop_list=(hadoop151 hadoop152 hadoop153)

# 配置免密登录,利用expect工具免交互输入
for i in ${hadoop_list[@]};do
expect -c "
spawn ssh-copy-id -i /root/.ssh/id_rsa.pub root@$i
  expect {
    \"*yes/no*\" {send \"yes\r\"; exp_continue}
    \"*password*\" {send \"$mypasswd\r\"; exp_continue}
  }"
done
EOF


	4.调用免密脚本
[root@hadoop151 ~]# bash password_free_login.sh

	5.测试验证
[root@hadoop151 ~]# ssh 'root@hadoop153'
Welcome to Ubuntu 22.04.4 LTS (GNU/Linux 5.15.0-122-generic x86_64)

 * Documentation:  https://help.ubuntu.com
 * Management:     https://landscape.canonical.com
 * Support:        https://ubuntu.com/pro

  System information as of Tue Oct 15 08:50:15 AM CST 2024

  System load:  0.0                Processes:             217
  Usage of /:   19.2% of 47.93GB   Users logged in:       1
  Memory usage: 11%                IPv4 address for eth0: 10.0.0.153
  Swap usage:   0%


Expanded Security Maintenance for Applications is not enabled.

50 updates can be applied immediately.
To see these additional updates run: apt list --upgradable

Enable ESM Apps to receive additional future security updates.
See https://ubuntu.com/esm or run: sudo pro status

New release '24.04.1 LTS' available.
Run 'do-release-upgrade' to upgrade to it.


Last login: Tue Oct 15 08:43:03 2024 from 10.0.0.1
[root@hadoop153 ~]# 
[root@hadoop153 ~]# logout 
Connection to hadoop153 closed.
[root@hadoop151 ~]# 

6.编写data_rsync.sh同步脚本

	1.编写同步脚本
[root@hadoop151 ~]# cat > /usr/local/sbin/data_rsync.sh <<'EOF'
#!/bin/bash

# Auther: Jason Yin

if  [ $# -lt 1 ];then
   echo "Usage: $0 /path/to/file(绝对路径)"
   exit
fi 

if [ ! -e $1 ];then
    echo "[ $1 ] dir or file not find!"
    exit
fi

fullpath=`dirname $1`

basename=`basename $1`

cd $fullpath

HADOOP_NODE=(hadoop151 hadoop152 hadoop153) 

for host in ${HADOOP_NODE[@]};do
  tput setaf 2
    echo ===== rsyncing ${host}: $basename =====
    tput setaf 7
	ssh ${host}  mkdir -pv /yinzhengjie/softwares /yinzhengjie/data/zk
    rsync -az $basename  `whoami`@${host}:$fullpath
    if [ $? -eq 0 ];then
      echo "命令执行成功!"
    fi
done
EOF


	2.添加执行权限
[root@hadoop151 ~]# chmod +x /usr/local/sbin/data_rsync.sh 

二.安装zookeeper环境

1.zookeeper集群的节点数量选择

当每秒请求量低于6w/s,读取数据占据70%,大多数是读的场景,官方测试数据建议选择3台集群。

参考链接:
	https://zookeeper.apache.org/doc/current/zookeeperOver.html
	

2.下载zookeeper软件

[root@hadoop151 ~]# wget https://dlcdn.apache.org/zookeeper/zookeeper-3.8.4/apache-zookeeper-3.8.4-bin.tar.gz

3.解压软件包

[root@hadoop151 ~]# tar xf apache-zookeeper-3.8.4-bin.tar.gz -C /yinzhengjie/softwares/

4.配置环境变量

[root@hadoop151 ~]# cat /etc/profile.d/zk.sh
#!/bin/bash

export ZK_HOME=/yinzhengjie/softwares/apache-zookeeper-3.8.4-bin
export PATH=$PATH:$ZK_HOME/bin:$JAVA_HOME/bin
[root@hadoop151 ~]# 
[root@hadoop151 ~]# source /etc/profile.d/zk.sh
[root@hadoop151 ~]# 

5.准备配置文件

[root@hadoop151 ~]# cat /yinzhengjie/softwares/apache-zookeeper-3.8.4-bin/conf/zoo.cfg 
# 定义最小单元的时间范围tick。
tickTime=2000
# 启动时最长等待tick数量。
initLimit=5
# 数据同步时最长等待的tick时间进行响应ACK
syncLimit=2
# 指定数据目录
dataDir=/yinzhengjie/data/zk
# 监听端口
clientPort=2181
# 开启四字命令允许所有的节点访问。
4lw.commands.whitelist=*
# server.ID=A:B:C[:D]
# ID:
#    zk的唯一编号。
# A:
#    zk的主机地址。
# B:
#    leader的选举端口,是谁leader角色,就会监听该端口。
# C: 
#    数据通信端口。
# D:
#    可选配置,指定角色。
server.151=10.0.0.151:2888:3888
server.152=10.0.0.152:2888:3888
server.153=10.0.0.153:2888:3888

## Metrics Providers
#
# https://prometheus.io Metrics Exporter
#metricsProvider.className=org.apache.zookeeper.metrics.prometheus.PrometheusMetricsProvider
#metricsProvider.httpHost=0.0.0.0
#metricsProvider.httpPort=7000
#metricsProvider.exportJvmInfo=true
[root@hadoop151 ~]# 

6.同步数据

[root@hadoop151 ~]# data_rsync.sh /etc/hosts
[root@hadoop151 ~]# data_rsync.sh /yinzhengjie/softwares/apache-zookeeper-3.8.4-bin
[root@hadoop151 ~]# data_rsync.sh /etc/profile.d/zk.sh

7.生成myid文件

[root@hadoop151 ~]# for ((host_id=151;host_id<=153;host_id++)) do ssh hadoop${host_id} "echo ${host_id} > /yinzhengjie/data/zk/myid";done

8.启动zookeeper集群

	1.各节点启动服务
source /etc/profile.d/zk.sh 
zkServer.sh start


	2.各节点查看服务
[root@hadoop151 ~]# zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /yinzhengjie/softwares/apache-zookeeper-3.8.4-bin/bin/../conf/zoo.cfg
Client port found: 2181. Client address: localhost. Client SSL: false.
Mode: follower
[root@hadoop151 ~]# 


[root@hadoop152 ~]# zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /yinzhengjie/softwares/apache-zookeeper-3.8.4-bin/bin/../conf/zoo.cfg
Client port found: 2181. Client address: localhost. Client SSL: false.
Mode: leader
[root@hadoop152 ~]# 
 

[root@hadoop153 ~]# zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /yinzhengjie/softwares/apache-zookeeper-3.8.4-bin/bin/../conf/zoo.cfg
Client port found: 2181. Client address: localhost. Client SSL: false.
Mode: follower
[root@hadoop153 ~]# 

三.部署Hadoop集群

1.下载Hadoop软件版

	1.各节点安装HDFS HA自动切换的依赖
apt -y install psmisc


	2.下载Hadoop软件包
wget https://dlcdn.apache.org/hadoop/common/hadoop-3.3.6/hadoop-3.3.6.tar.gz

2.解压软件包

[root@hadoop151 ~]# tar xf hadoop-3.3.6.tar.gz -C /yinzhengjie/softwares/

3.配置环境变量

	1.创建环境变量文件
[root@hadoop151 ~]# cat /etc/profile.d/hadoop.sh
#!/bin/bash

export HADOOP_HOME=/yinzhengjie/softwares/hadoop-3.3.6
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin 
[root@hadoop151 ~]# 

	2.使得环境变量生效
[root@hadoop151 ~]# source /etc/profile.d/hadoop.sh
[root@hadoop151 ~]# 

4.导入JAVA_HOME环境变量

[root@hadoop151 ~]# vim /yinzhengjie/softwares/hadoop-3.3.6/etc/hadoop/hadoop-env.sh 
...
export JAVA_HOME=/yinzhengjie/softwares/jdk1.8.0_291 

5.编辑hdfs-site.xml配置文件

[root@hadoop151 ~]# cat /yinzhengjie/softwares/hadoop-3.3.6/etc/hadoop/hdfs-site.xml
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
	<!-- 这里是配置逻辑名称,可以随意写 -->
	<property>
  		<name>dfs.nameservices</name>
  		<value>yinzhengjie-hadoop</value>
	</property>

	<property>
		<!-- 禁用权限 -->
		<name>dfs.permissions.enabled</name>
		<value>false</value>
	</property>

	<property>
		<!-- 配置NameNode的名称,多个用逗号分割  -->
 	 	<name>dfs.ha.namenodes.yinzhengjie-hadoop</name>
  		<value>nn1,nn2</value>
	</property>

	<property>
  	   <!-- 
			语法格式: "dfs.namenode.rpc-address.[nameservice ID].[namenode ID]"
			表示namenode所在服务器名称和RPC监听端口号 
	   -->
	  <name>dfs.namenode.rpc-address.yinzhengjie-hadoop.nn1</name>
	  <value>hadoop151:8020</value>
	</property>

	<property>
	  <name>dfs.namenode.rpc-address.yinzhengjie-hadoop.nn2</name>
	  <value>hadoop153:8020</value>
	</property>


	<property>
  	   <!-- 
			语法格式: "dfs.namenode.http-address.[nameservice ID].[namenode ID]"
			表示namenode所在服务器名称和HTTP监听端口号 
	   -->
	  <name>dfs.namenode.http-address.yinzhengjie-hadoop.nn1</name>
	  <value>hadoop151:50070</value>
	</property>

	<property>
	  <name>dfs.namenode.http-address.yinzhengjie-hadoop.nn2</name>
	  <value>hadoop153:50070</value>
	</property>

    <property>
	  <!-- namenode共享的编辑目录,journalnode所在服务器名称和监听的端口  -->
      <name>dfs.namenode.shared.edits.dir</name>
      <value>qjournal://hadoop151:8485;hadoop152:8485;hadoop153:8485/yinzhengjie-hadoop</value>
    </property>
    
    <property>
	  <!-- namenode高可用代理类,这里配置HDFS客户端连接到Active NameNode的一个java类  -->
      <name>dfs.client.failover.proxy.provider.yinzhengjie-hadoop</name>
      <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
    </property>

	<property>
		<!--  在容灾发生时,保护活跃的namenode,使用ssh自动免密登录。 -->
		<name>dfs.ha.fencing.methods</name>
		<value>
	          sshfence 
	          shell(/bin/true)
		</value>
	</property>

	<property>
		<!-- 指定私钥的存储路径 -->
		<name>dfs.ha.fencing.ssh.private-key-files</name>
		<value>/root/.ssh/id_rsa</value>
	</property>

	<property>
		<!-- 指定HDFS副本数量。 -->
		<name>dfs.replication</name>
		<value>3</value>
	</property>
        
	<property>
		<!-- 指定namenode数据的存储路径 -->
		<name>dfs.namenode.name.dir</name>
		<value>/yinzhengjie/hadoop/hdfs/namenode</value>
	</property>
        
	<property>
		<!-- 指定datanode数据的存储路径 -->
		<name>dfs.datanode.data.dir</name>
		<value>/yinzhengjie/hadoop/hdfs/datanode</value>
	</property>

	<property>
		<!-- 指定journalnode数据的存储路径 -->
		<name>dfs.journalnode.edits.dir</name>
		<value>/yinzhengjie/hadoop/hdfs/journalnode</value>
	</property>


	<property>
		<!-- 配置namenode自动切换 -->
		<name>dfs.ha.automatic-failover.enabled</name>
		<value>true</value>
	</property>

</configuration>
[root@hadoop151 ~]# 

6.编辑core-site.xml配置文件

[root@hadoop151 ~]# cat /yinzhengjie/softwares/hadoop-3.3.6/etc/hadoop/core-site.xml 
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
	<property>
		<!-- 客户端连接HDFS时,为Hadoop客户端配置默认的高可用路径前缀。  -->
		<name>fs.defaultFS</name>
		<value>hdfs://yinzhengjie-hadoop</value>
	</property>
        
	<property>
		<!-- 
		Hadoop数据存放的路径,namenode,datanode数据存放路径都依赖本路径。

		不要使用"file:///"开头,使用绝对路径即可。

		namenode默认存储路径:
			file://${hadoop.tmp.dir}/dfs/name
			
		datanode默认存储路径
			file://${hadoop.tmp.dir}/dfs/data

		 -->
		<name>hadoop.tmp.dir</name>
		<value>/yinzhengjie/data/hdfs/ha</value>
	</property>

	<property>
		<!-- 指定zookeeper所在的节点 -->
		<name>ha.zookeeper.quorum</name>
		<value>hadoop151:2181,hadoop152:2181,hadoop153:2181</value>
	</property>
</configuration>
[root@hadoop151 ~]# 

7.编辑yarn-site.xml配置文件

[root@hadoop151 ~]# cat /yinzhengjie/softwares/hadoop-3.3.6/etc/hadoop/yarn-site.xml 
<?xml version="1.0"?>

<configuration>
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
        <description>Reducer获取数据的方式</description>
    </property>

	<property>
		<name>yarn.nodename.env-whitelist</name>
		<value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOME</value>
        <description>声明YARN节点的环境变量</description>
	</property>

    <property>
        <name>yarn.resourcemanager.ha.enabled</name>
        <value>true</value>
        <description>启用resourcemanager的HA功能</description>
    </property>

    <property>
        <name>yarn.resourcemanager.cluster-id</name>
        <value>yinzhengjie-hadoop</value>
        <description>标识集群,以确保RM不会接替另一个群集的活动状态</description>
    </property>

    <property>
        <name>yarn.resourcemanager.ha.rm-ids</name>
        <value>rm151,rm153</value>
        <description>ResourceManager的逻辑ID列表</description>
    </property>


    <property>
        <name>yarn.resourcemanager.hostname.rm151</name>
        <value>hadoop151</value>
        <description>指定rm151逻辑别名对应的真实服务器地址,即您可以理解添加映射关系.</description>
    </property>

    <property>
        <name>yarn.resourcemanager.hostname.rm153</name>
        <value>hadoop153</value>
        <description>指定rm153逻辑别名对应的真实服务器地址,即您可以理解添加映射关系.</description>
    </property>

	<property>
		<name>yarn.resourcemanager.webapp.address.rm151</name>
		<value>hadoop151:8088</value>
        <description>指定RM http监听的节点</description>
	</property>

	<property>
		<name>yarn.resourcemanager.webapp.address.rm153</name>
		<value>hadoop153:8088</value>
        <description>指定RM http监听的节点</description>
	</property>

    <property>
        <name>yarn.resourcemanager.zk-address</name>
        <value>hadoop151:2181,hadoop152:2181,hadoop153:2181</value>
        <description>指定zookeeper集群的地址</description>
    </property>

    <property>
        <name>yarn.resourcemanager.recovery.enabled</name>
        <value>true</value>
        <description>启用自动故障转移(即自动恢复功能)</description>
    </property>

    <property>
        <name>yarn.resourcemanager.store.class</name>
        <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
        <description>指定resourcemanager的状态信息存储在zookeeper集群</description>
    </property>

    <property>
        <name>yarn.resourcemanager.vmem-check-enabled</name>
        <value>false</value>
        <description>关闭虚拟内存检查</description>
    </property>

    <property>
        <name>yarn.nodemanager.resource.datect-hardware-capabilities</name>
        <value>true</value>
        <description>启用节点的内存和CPU自动检测,最小内存为1GB</description>
    </property>

    <property>
        <name>yarn.log-aggregation-enable</name>
        <value>true</value>
        <description>启用或禁用日志聚合的配置,默认为false,即禁用,将该值设置为true,表示开启日志聚集功能使能</description>
    </property>

    <property>
        <name>yarn.log-aggregation.retain-seconds</name>
        <value>604800</value>
        <description>删除聚合日志前要保留多长时间(默认单位是秒),默认值是"-1"表示禁用,请注意,将此值设置得太小,您将向Namenode发送垃圾邮件.</description>
    </property>

    <property>
        <name>yarn.log-aggregation.retain-check-interval-seconds</name>
        <value>3600</value>
        <description>单位为秒,检查聚合日志保留之间的时间.如果设置为0或负值,那么该值将被计算为聚合日志保留时间的十分之一;请注意,将此值设置得太小,您将向名称节点发送垃圾邮件.</description>
    </property>

</configuration>
[root@hadoop151 ~]# 

8.编辑mapred-site.xml 配置文件

[root@hadoop151 ~]# cat /yinzhengjie/softwares/hadoop-3.3.6/etc/hadoop/mapred-site.xml 
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
	<property>
		<!-- 声明MapReduce框架在YARN上运行 -->
		<name>mapreduce.framework.name</name>
		<value>yarn</value>
	</property>

    <property>
      <name>yarn.app.mapreduce.am.env</name>
      <value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value>
    </property>
    <property>
      <name>mapreduce.map.env</name>
      <value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value>
    </property>
    <property>
      <name>mapreduce.reduce.env</name>
      <value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value>
    </property> 
    
</configuration>
[root@hadoop151 ~]# 

9.编辑workers配置文件

[root@hadoop151 ~]# cat /yinzhengjie/softwares/hadoop-3.3.6/etc/hadoop/workers 
hadoop151
hadoop152
hadoop153
[root@hadoop151 ~]# 

10.配置启停脚本环境变量

[root@hadoop151 ~]# vim /yinzhengjie/softwares/hadoop-3.3.6/sbin/start-dfs.sh 
...
# 注意,这几个变量需要在脚本的开头定义,不要放在脚本的末尾,否则识别不到这些变量哟~
HDFS_DATANODE_USER=root
HDFS_DATANODE_SECURE_USER=root
HDFS_NAMENODE_USER=root
HDFS_JOURNALNODE_USER=root
HDFS_ZKFC_USER=root


[root@hadoop151 ~]# vim /yinzhengjie/softwares/hadoop-3.3.6/sbin/stop-dfs.sh 
...
# 注意,这几个变量需要在脚本的开头定义,不要放在脚本的末尾,否则识别不到这些变量哟~
HDFS_DATANODE_USER=root
HDFS_DATANODE_SECURE_USER=root
HDFS_NAMENODE_USER=root
HDFS_JOURNALNODE_USER=root
HDFS_ZKFC_USER=root


[root@hadoop151 ~]# vim /yinzhengjie/softwares/hadoop-3.3.6/sbin/start-yarn.sh 
...
# 注意,这几个变量需要在脚本的开头定义,不要放在脚本的末尾,否则识别不到这些变量哟~
YARN_RESOURCEMANAGER_USER=root
YARN_NODEMANAGER_USER=root


[root@hadoop151 ~]# vim /yinzhengjie/softwares/hadoop-3.3.6/sbin/stop-yarn.sh 
...
# 注意,这几个变量需要在脚本的开头定义,不要放在脚本的末尾,否则识别不到这些变量哟~
YARN_RESOURCEMANAGER_USER=root
YARN_NODEMANAGER_USER=root

11.同步配置到集群其它节点

[root@hadoop151 ~]# data_rsync.sh /etc/profile.d/hadoop.sh 
[root@hadoop151 ~]# data_rsync.sh /yinzhengjie/softwares/hadoop-3.3.6/

四.HDFS初始化及启停

1.启动zookeeper集群

	1.各节点启动zk集群
[root@hadoop151 ~]# zkServer.sh start
ZooKeeper JMX enabled by default
Using config: /yinzhengjie/softwares/apache-zookeeper-3.8.4-bin/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
[root@hadoop151 ~]#

[root@hadoop152 ~]# zkServer.sh start
ZooKeeper JMX enabled by default
Using config: /yinzhengjie/softwares/apache-zookeeper-3.8.4-bin/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
[root@hadoop152 ~]#

[root@hadoop153 ~]# zkServer.sh start
ZooKeeper JMX enabled by default
Using config: /yinzhengjie/softwares/apache-zookeeper-3.8.4-bin/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
[root@hadoop153 ~]# 



	2.检查ZK集群状态
[root@hadoop151 ~]# zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /yinzhengjie/softwares/apache-zookeeper-3.8.4-bin/bin/../conf/zoo.cfg
Client port found: 2181. Client address: localhost. Client SSL: false.
Mode: follower
[root@hadoop151 ~]#

[root@hadoop152 ~]# zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /yinzhengjie/softwares/apache-zookeeper-3.8.4-bin/bin/../conf/zoo.cfg
Client port found: 2181. Client address: localhost. Client SSL: false.
Mode: leader
[root@hadoop152 ~]# 
 
[root@hadoop153 ~]# zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /yinzhengjie/softwares/apache-zookeeper-3.8.4-bin/bin/../conf/zoo.cfg
Client port found: 2181. Client address: localhost. Client SSL: false.
Mode: follower
[root@hadoop153 ~]# 

2.HDFS初始化zookeeper信息

image-20241012185923590

[root@hadoop151 ~]# hdfs zkfc -formatZK
2024-10-12 10:56:13,858 INFO tools.DFSZKFailoverController: STARTUP_MSG: 
/************************************************************
STARTUP_MSG: Starting DFSZKFailoverController
STARTUP_MSG:   host = hadoop151/10.0.0.151
STARTUP_MSG:   args = [-formatZK]
STARTUP_MSG:   version = 3.3.6
...
2024-10-12 10:56:14,514 INFO ha.ActiveStandbyElector: Successfully created /hadoop-ha/yinzhengjie-hadoop in ZK.
2024-10-12 10:56:14,636 INFO zookeeper.ZooKeeper: Session: 0x9800009c9e070002 closed
2024-10-12 10:56:14,636 WARN ha.ActiveStandbyElector: Ignoring stale result from old client with sessionId 0x9800009c9e070002
2024-10-12 10:56:14,637 WARN ha.ActiveStandbyElector: Ignoring stale result from old client with sessionId 0x9800009c9e070002
2024-10-12 10:56:14,637 INFO zookeeper.ClientCnxn: EventThread shut down for session: 0x9800009c9e070002
2024-10-12 10:56:14,639 INFO tools.DFSZKFailoverController: SHUTDOWN_MSG: 
/************************************************************
SHUTDOWN_MSG: Shutting down DFSZKFailoverController at hadoop151/10.0.0.151
************************************************************/
[root@hadoop151 ~]#  


温馨提示:
	如上图所示,格式化成功后,在zookeeper集群中会自动初始化创建对应的znode信息哟。

3.启动JN集群

[root@hadoop151 ~]# hdfs --daemon start journalnode
[root@hadoop151 ~]# 
[root@hadoop151 ~]# jps
2611 JournalNode
2652 Jps
1742 QuorumPeerMain
[root@hadoop151 ~]# 



[root@hadoop152 ~]# hdfs --daemon start journalnode
WARNING: /yinzhengjie/softwares/hadoop-3.3.6/logs does not exist. Creating.
[root@hadoop152 ~]# 
[root@hadoop152 ~]# jps
1586 QuorumPeerMain
2307 JournalNode
1721 ZooKeeperMain
2347 Jps
[root@hadoop152 ~]# 


[root@hadoop153 ~]# hdfs --daemon start journalnode
WARNING: /yinzhengjie/softwares/hadoop-3.3.6/logs does not exist. Creating.
[root@hadoop153 ~]# 
[root@hadoop153 ~]# jps
2549 JournalNode
1993 QuorumPeerMain
2590 Jps
[root@hadoop153 ~]#  

4.格式化namenode生成默认的镜像文件

[root@hadoop151 ~]# hdfs namenode -format
2024-10-12 11:04:18,575 INFO namenode.NameNode: STARTUP_MSG: 
/************************************************************
STARTUP_MSG: Starting NameNode
STARTUP_MSG:   host = hadoop151/10.0.0.151
STARTUP_MSG:   args = [-format]
STARTUP_MSG:   version = 3.3.6
...
2024-10-12 11:04:21,112 INFO common.Storage: Storage directory /yinzhengjie/hadoop/hdfs/namenode has been successfully formatted.
2024-10-12 11:04:21,295 INFO namenode.FSImageFormatProtobuf: Saving image file /yinzhengjie/hadoop/hdfs/namenode/current/fsimage.ckpt_0000000000000000000 using no compression
2024-10-12 11:04:21,493 INFO namenode.FSImageFormatProtobuf: Image file /yinzhengjie/hadoop/hdfs/namenode/current/fsimage.ckpt_0000000000000000000 of size 399 bytes saved in 0 seconds .
2024-10-12 11:04:21,510 INFO namenode.NNStorageRetentionManager: Going to retain 1 images with txid >= 0
2024-10-12 11:04:21,565 INFO namenode.FSNamesystem: Stopping services started for active state
2024-10-12 11:04:21,566 INFO namenode.FSNamesystem: Stopping services started for standby state
2024-10-12 11:04:21,572 INFO namenode.FSImage: FSImageSaver clean checkpoint: txid=0 when meet shutdown.
2024-10-12 11:04:21,572 INFO namenode.NameNode: SHUTDOWN_MSG: 
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at hadoop151/10.0.0.151
************************************************************/
[root@hadoop151 ~]#  
[root@hadoop151 ~]# ll /yinzhengjie/hadoop/hdfs/namenode/current/
total 24
drwx------ 2 root root 4096 Oct 12 19:04 ./
drwxr-xr-x 3 root root 4096 Oct 12 19:04 ../
-rw-r--r-- 1 root root  399 Oct 12 19:04 fsimage_0000000000000000000
-rw-r--r-- 1 root root   62 Oct 12 19:04 fsimage_0000000000000000000.md5
-rw-r--r-- 1 root root    2 Oct 12 19:04 seen_txid
-rw-r--r-- 1 root root  215 Oct 12 19:04 VERSION
[root@hadoop151 ~]#  

5.启动active的namenode

[root@hadoop151 ~]# hdfs --daemon start namenode
[root@hadoop151 ~]# 
[root@hadoop151 ~]# jps
2769 NameNode
2611 JournalNode
2841 Jps
1742 QuorumPeerMain
[root@hadoop151 ~]# 

6.启动Standby的namenode

[root@hadoop153 ~]# hdfs namenode -bootstrapStandby
2024-10-12 11:10:43,268 INFO namenode.NameNode: STARTUP_MSG: 
/************************************************************
STARTUP_MSG: Starting NameNode
STARTUP_MSG:   host = hadoop153/10.0.0.153
STARTUP_MSG:   args = [-bootstrapStandby]
STARTUP_MSG:   version = 3.3.6
...
STARTUP_MSG:   java = 1.8.0_291
************************************************************/
2024-10-12 11:10:43,283 INFO namenode.NameNode: registered UNIX signal handlers for [TERM, HUP, INT]
2024-10-12 11:10:43,414 INFO namenode.NameNode: createNameNode [-bootstrapStandby]
2024-10-12 11:10:43,761 INFO ha.BootstrapStandby: Found nn: nn1, ipc: hadoop151/10.0.0.151:8020
2024-10-12 11:10:44,184 INFO common.Util: Assuming 'file' scheme for path /yinzhengjie/hadoop/hdfs/namenode in configuration.
2024-10-12 11:10:44,184 INFO common.Util: Assuming 'file' scheme for path /yinzhengjie/hadoop/hdfs/namenode in configuration.
=====================================================
About to bootstrap Standby ID nn2 from:
           Nameservice ID: yinzhengjie-hadoop
        Other Namenode ID: nn1
  Other NN's HTTP address: http://hadoop151:50070
  Other NN's IPC  address: hadoop151/10.0.0.151:8020
             Namespace ID: 1026241580
            Block pool ID: BP-1359559689-10.0.0.151-1728731061094
               Cluster ID: CID-d6e4bfb6-4c28-4f14-870c-5ee80196b4db
           Layout version: -66
       isUpgradeFinalized: true
=====================================================
2024-10-12 11:10:44,798 INFO common.Storage: Storage directory /yinzhengjie/hadoop/hdfs/namenode has been successfully formatted.
2024-10-12 11:10:44,813 INFO common.Util: Assuming 'file' scheme for path /yinzhengjie/hadoop/hdfs/namenode in configuration.
2024-10-12 11:10:44,814 INFO common.Util: Assuming 'file' scheme for path /yinzhengjie/hadoop/hdfs/namenode in configuration.
2024-10-12 11:10:44,849 INFO namenode.FSEditLog: Edit logging is async:true
2024-10-12 11:10:44,932 INFO namenode.TransferFsImage: Opening connection to http://hadoop151:50070/imagetransfer?getimage=1&txid=0&storageInfo=-66:1026241580:1728731061094:CID-d6e4bfb6-4c28-4f14-870c-5ee80196b4db&bootstrapstandby=true
2024-10-12 11:10:45,059 INFO common.Util: Combined time for file download and fsync to all disks took 0.01s. The file download took 0.00s at 0.00 KB/s. Synchronous (fsync) write to disk of /yinzhengjie/hadoop/hdfs/namenode/current/fsimage.ckpt_0000000000000000000 took 0.00s.
2024-10-12 11:10:45,059 INFO namenode.TransferFsImage: Downloaded file fsimage.ckpt_0000000000000000000 size 399 bytes.
2024-10-12 11:10:45,066 INFO ha.BootstrapStandby: Skipping InMemoryAliasMap bootstrap as it was not configured
2024-10-12 11:10:45,073 INFO namenode.NameNode: SHUTDOWN_MSG: 
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at hadoop153/10.0.0.153
************************************************************/
[root@hadoop153 ~]#  

7.启动HDFS集群

image-20241012192102374

	温馨提示:
		HDFS集群启动成功后,可以访问NameNode的WebUI,即50070端口


[root@hadoop151 ~]# start-dfs.sh 
Starting namenodes on [hadoop151 hadoop153]
hadoop151: namenode is running as process 2769.  Stop it first and ensure /tmp/hadoop-root-namenode.pid file is empty before retry.
Starting datanodes
Starting journal nodes [hadoop151 hadoop152 hadoop153]
hadoop152: journalnode is running as process 2307.  Stop it first and ensure /tmp/hadoop-root-journalnode.pid file is empty before retry.
hadoop151: journalnode is running as process 2611.  Stop it first and ensure /tmp/hadoop-root-journalnode.pid file is empty before retry.
hadoop153: journalnode is running as process 2549.  Stop it first and ensure /tmp/hadoop-root-journalnode.pid file is empty before retry.
Starting ZK Failover Controllers on NN hosts [hadoop151 hadoop153]
[root@hadoop151 ~]#
[root@hadoop151 ~]# jps
2769 NameNode
3986 Jps
2611 JournalNode
3927 DFSZKFailoverController
3531 DataNode
1742 QuorumPeerMain
[root@hadoop151 ~]# 


[root@hadoop152 ~]# jps
1586 QuorumPeerMain
2594 DataNode
2307 JournalNode
1721 ZooKeeperMain
2747 Jps
[root@hadoop152 ~]# 


[root@hadoop153 ~]# jps
3264 Jps
2549 JournalNode
1993 QuorumPeerMain
3212 DFSZKFailoverController
2846 NameNode
2958 DataNode
[root@hadoop153 ~]# 

8.启动YARN集群

image-20241012194055732

	温馨提示:
		YARN集群启动成功后,可以访问ResourceManager的WebUI,即8088端口
		
[root@hadoop151 ~]# start-yarn.sh 
Starting resourcemanagers on [ hadoop151 hadoop153]
Starting nodemanagers
[root@hadoop151 ~]# 
[root@hadoop151 ~]# jps
2769 NameNode
2611 JournalNode
3927 DFSZKFailoverController
6153 Jps
4795 NodeManager
5947 ResourceManager
3531 DataNode
1742 QuorumPeerMain
[root@hadoop151 ~]# 


[root@hadoop152 ~]# jps
1586 QuorumPeerMain
2594 DataNode
3010 NodeManager
2307 JournalNode
1721 ZooKeeperMain
3422 Jps
[root@hadoop152 ~]# 


[root@hadoop153 ~]# jps
4242 ResourceManager
2549 JournalNode
4568 Jps
1993 QuorumPeerMain
3212 DFSZKFailoverController
3660 NodeManager
2846 NameNode
2958 DataNode
[root@hadoop153 ~]# 

五.补充知识

1.Hadoop停止集群

	1.先停止Hadoop集群
[root@hadoop151 ~]# stop-all.sh 
Stopping namenodes on [hadoop151 hadoop153]
Stopping datanodes
Stopping journal nodes [hadoop151 hadoop152 hadoop153]
Stopping ZK Failover Controllers on NN hosts [hadoop151 hadoop153]
Stopping nodemanagers
Stopping resourcemanagers on [ hadoop151 hadoop153]
[root@hadoop151 ~]# 


	2.在停止zookeeper集群
[root@hadoop151 ~]# zkServer.sh stop
ZooKeeper JMX enabled by default
Using config: /yinzhengjie/softwares/apache-zookeeper-3.8.4-bin/bin/../conf/zoo.cfg
Stopping zookeeper ... STOPPED
[root@hadoop151 ~]# 
[root@hadoop151 ~]# jps
7323 Jps
[root@hadoop151 ~]# 


[root@hadoop152 ~]# zkServer.sh stop
ZooKeeper JMX enabled by default
Using config: /yinzhengjie/softwares/apache-zookeeper-3.8.4-bin/bin/../conf/zoo.cfg
Stopping zookeeper ... STOPPED
[root@hadoop152 ~]# 
[root@hadoop152 ~]# jps
3885 Jps
[root@hadoop152 ~]# 


[root@hadoop153 ~]# zkServer.sh stop
ZooKeeper JMX enabled by default
Using config: /yinzhengjie/softwares/apache-zookeeper-3.8.4-bin/bin/../conf/zoo.cfg
Stopping zookeeper ... STOPPED
[root@hadoop153 ~]# 
[root@hadoop153 ~]# jps
5251 Jps
[root@hadoop153 ~]# 



	3.集群拍快照
略。

2.启动Hadoop集群

	1.先启动zookeeper集群
[root@hadoop151 ~]# zkServer.sh start

[root@hadoop152 ~]# zkServer.sh start

[root@hadoop153 ~]# zkServer.sh start


	2.启动Hadoop集群
[root@hadoop151 ~]# start-all.sh 
Starting namenodes on [hadoop151 hadoop153]
Starting datanodes
Starting journal nodes [hadoop151 hadoop152 hadoop153]
Starting ZK Failover Controllers on NN hosts [hadoop151 hadoop153]
Starting resourcemanagers on [ hadoop151 hadoop153]
Starting nodemanagers
[root@hadoop151 ~]# 
[root@hadoop151 ~]# 
[root@hadoop151 ~]# jps
1697 DataNode
2966 Jps
2614 NodeManager
2152 DFSZKFailoverController
1929 JournalNode
1290 QuorumPeerMain
1548 NameNode
2463 ResourceManager
[root@hadoop151 ~]# 


[root@hadoop152 ~]# jps
1809 Jps
1249 QuorumPeerMain
1691 NodeManager
1421 DataNode
1549 JournalNode
[root@hadoop152 ~]# 


[root@hadoop153 ~]# jps
1971 ResourceManager
2215 Jps
1256 QuorumPeerMain
1816 DFSZKFailoverController
1529 DataNode
2075 NodeManager
1420 NameNode
1661 JournalNode
[root@hadoop153 ~]# 

3.测试HDFS是否正常工作

image-20241016162441428

[root@hadoop151 ~]# ll -h jdk-8u291-linux-x64.tar.gz 
-rw-r--r-- 1 root root 139M Oct 13 09:17 jdk-8u291-linux-x64.tar.gz
[root@hadoop151 ~]# 
[root@hadoop151 ~]# hdfs dfs -put jdk-8u291-linux-x64.tar.gz /jdk1.8
[root@hadoop151 ~]# 
[root@hadoop151 ~]# hdfs dfs -ls /
Found 1 items
-rw-r--r--   3 root supergroup  144935989 2024-10-16 08:19 /jdk1.8
[root@hadoop151 ~]# 

4.yarn上执行MapReduce程序

image-20241016170518567

	1.编写测试文件
cat > k8s.log <<EOF
pod
deploy
ds
rs
rc
jobs
cj
sts
pod
affinity
scheduler
pod
EOF
	
	
	2.将文件上传到HDFS集群
[root@hadoop151 ~]# hdfs dfs -put k8s.log /yinzhengjie-k8s
[root@hadoop151 ~]# 
[root@hadoop151 ~]# hdfs dfs -ls /
Found 3 items
-rw-r--r--   3 root supergroup  144935989 2024-10-16 08:19 /jdk1.8
drwxr-xr-x   - root supergroup          0 2024-10-16 08:30 /tmp
-rw-r--r--   3 root supergroup         59 2024-10-16 08:33 /yinzhengjie-k8s
[root@hadoop151 ~]# 

	3.测试wordcount示例
hadoop jar /oldboyedu/softwares/hadoop-3.3.6/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.6.jar wordcount /yinzhengjie-k8s  /yinzhengjie/data/output


	4.查看产生的数据是否正确
[root@hadoop151 ~]# hdfs dfs -ls /yinzhengjie/data/output
Found 2 items
-rw-r--r--   3 root supergroup          0 2024-10-16 08:44 /yinzhengjie/data/output/_SUCCESS
-rw-r--r--   3 root supergroup         71 2024-10-16 08:44 /yinzhengjie/data/output/part-r-00000
[root@hadoop151 ~]# 

	5.查看测试结果
[root@hadoop151 ~]# hdfs dfs -cat /yinzhengjie/data/output/part-r-00000
affinity	1
cj	1
deploy	1
ds	1
jobs	1
pod	3
rc	1
rs	1
scheduler	1
sts	1
[root@hadoop151 ~]# 

5.启用yarn日志聚集功能

推荐阅读:
	https://www.cnblogs.com/yinzhengjie/p/9471921.html

标签:10,hadoop153,可用,hadoop,yinzhengjie,hadoop151,搭建,root,Hadoop3
From: https://www.cnblogs.com/yinzhengjie/p/18473316

相关文章

  • 公网Linux环境搭建frp实现内网穿透
    前提:本实验为一台ubuntu22操作系统云主机脚本适用于安装平台:CentOS、Debian、UbuntuFRP项目地址:https://github.com/fatedier/frpFRP一键脚本地址:https://github.com/MvsCode/frps-onekey 1、FRP服务器端一键安装脚本(脚本在本文最后有,如果在服务器上无法获取到下面的instal......
  • STK轨道环境搭建(二)
    写一些小的辅助功能,很零碎1.在一个场景里添加不同中心天体的卫星上一部分的时候就碰到了这个问题,当时用的是Astrogator预报器解决的,中间偶尔也会在想能不能用轨道参数来解决,事实是可以用Insert的:例如,此时在月球为中心天体的场景下添加了一个环月卫星:如果再用普通参数......
  • Lnmp(mysql分离)(nginx 1.13.6+mysql5.5+php5.3)环境一键搭建
    Lnmp(mysql分离)(nginx 1.13.6+mysql5.5+php5.3)环境一键搭建如果对运维课程感兴趣,可以在b站上、csdn或微信视频号上搜索我的账号:运维实战课程,可以关注我,学习更多免费的运维实战技术视频在192.168.37.128服务器上:(mysql只到makeinstall即可)nginx默认站点html1.上传lnmp的安装......
  • k8s多master节点配置高可用
    你们集群的master是单master还是多master多master是如何建立高可用的?负载均衡器(LoadBalancer):通过使用负载均衡器,如Nginx或HAProxy,可以实现对kube-apiserver的负载均衡和反向代理。这确保了客户端请求可以均匀地分配到多个Master节点上。Keepalived:使用Keepalived软件......
  • CitrixSQL Server 2016高可用之SQL镜像 SQL Server mirror 带见证服务器
    CitrixSQLServer2016高可用之SQL镜像SQLServermirror带见证服务器原来写过SQL-2008的镜像教程,时过境迁,现在流行2016了,当然也是因为自己常常用到这个功能,写下来SQL的镜像方法帮助不会的朋友。这个教程对于SQL2008\2012\2016以及2017都是可用的。三台SQL服务器,都安装好SQL软......
  • 《刚刚问世》系列初窥篇-Java+Playwright自动化测试-2-环境准备与搭建-基于Maven(详细
    1.简介上一篇宏哥已经讲解和分享了如何通过引入jar包来搭建Java+Playwright自动化测试环境,这一种是比较老的方法,说白了就是过时的老古董,但是我们必须了解和知道,其实maven搭建无非也就是下载引入相关的jar包,只不过相比之下是简单方便了,了解其本质可以帮助我们更好的学习maven搭建......
  • 2024 最新 jetbrains GoLand 2024.1.6 激活(亲测可用)
    注意:接下来本文分享免费激活 GoLand 等Jetbrains全家桶工具,一直支持到最新版本2024.1.6。 1.下载安装IDEA (mac、window、linux都支持)大家直接在官网下载最新版本,登陆官网,下载最新版本2024.1.4。一步一步确定安装,然后打开这里提示输入激活码,先关闭应用!!!2.下载激活工具......
  • 2024 最新 jetbrains DataGrip 2024.1.6 激活(亲测可用)
    注意:接下来本文分享免费激活 IDEA 等Jetbrains全家桶工具,一直支持到最新版本2024.1.6。 1.下载安装IDEA (mac、window、linux都支持)大家直接在官网下载最新版本,登陆官网,下载最新版本2024.1.4。一步一步确定安装,然后打开这里提示输入激活码,先关闭应用!!!2.下载激活工具打......
  • 《刚刚问世》系列初窥篇-Java+Playwright自动化测试-2-环境准备与搭建-基于Maven(详细
    1.简介上一篇宏哥已经讲解和分享了如何通过引入jar包来搭建Java+Playwright自动化测试环境,这一种是比较老的方法,说白了就是过时的老古董,但是我们必须了解和知道,其实maven搭建无非也就是下载引入相关的jar包,只不过相比之下是简单方便了,了解其本质可以帮助我们更好的学习maven搭建......
  • 2024 最新 jetbrains PyCharm 2024.1.6 激活(亲测可用)
    注意:接下来本文分享免费激活 PyCharm等Jetbrains全家桶工具,一直支持到最新版本2024.1.6。 1.下载安装IDEA (mac、window、linux都支持)大家直接在官网下载最新版本,登陆官网,下载最新版本2024.1.4。一步一步确定安装,然后打开这里提示输入激活码,先关闭应用!!!2.下载激活工具......