首页 > 其他分享 >什么是大模型?(超详细)大模型从入门到精通,看这一篇就够了!

什么是大模型?(超详细)大模型从入门到精通,看这一篇就够了!

时间:2024-10-14 10:19:49浏览次数:8  
标签:入门 训练 AI 模型 就够 学习 文本 语言

大模型的定义

大模型是指具有数千万甚至数亿参数的深度学习模型。近年来,随着计算机技术和大数据的快速发展,深度学习在各个领域取得了显著的成果,如自然语言处理,图片生成,工业数字化等。为了提高模型的性能,研究者们不断尝试增加模型的参数数量,从而诞生了大模型这一概念。

大模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。

大模型采用预训练+微调的训练模式,在大规模数据上进行训练后,能快速适应一系列下游任务的模型。

img

大模型和小模型的区别

img

大模型和小模型在应用方面最大的区别是大模型偏向于全能化、通用化,而小模型一般偏向于解决某一垂直领域中的某个具体问题。比如一个图像识别小模型专门训练用来识别车牌号,对车牌号可以有很好的识别精度。但是一个图像识别大模型不仅可以识别车牌号,还可以识别我们生活中碰到的大部分图片,而且站在我们人类的视角来看,他似乎对图片中的内容有自己的理解,看起来拥有更高的智能化水平。

另外相比小模型来说,大模型通常具有更多的参数,能够学习更复杂的特征和模式。同时大模型的训练数据集也会更大,架构更为复杂,训练起来也需要更高的计算资源。

大模型的分类

按照输入数据类型的不同,大模型主要可以分为以下三大类:

img

语言大模型

是指在自然语言处理(NLP)领域中的一类大模型,通常用于处理文本数据和理解自然语言。

视觉大模型

是指在计算机视觉(CV)领域中使用的大模型,通常用于图像处理和分析。

多模态大模型

是指能够处理多种不同类型数据的大模型,例如文本、图像、音频等多模态数据。

按照应用领域的不同,大模型主要可以分为 L0、L1、L2 三个层级:

img

L0 通用大模型

是指可以在多个领域和任务上通用的大模型。通用大模型就像完成了大学前素质教育阶段的学生,有基础的认知能力,数学、英语、化学、物理等各学科也都懂一点。

L1 行业大模型

是指那些针对特定行业或领域的大模型。它们通常使用行业相关的数据进行预训练或微调,以提高在该领域的性能和准确度。行业大模型就像选择了某一个专业的大学生,对自己专业下的相关知识有了更深入的了解。

L2 垂直大模型

是指那些针对特定任务或场景的大模型。它们通常使用任务相关的数据进行预训练或微调,以提高在该任务上的性能和效果。垂直大模型就像研究生,对特定行业下的某个具体领域有比较深入的研究。

大语言模型LLM

大语言模型(Large Language Model,LLM)是大模型的子分类,是专门通过处理大量文本数据来理解和生成人类语言的AI系统,从而执行各种自然语言处理任务,如文本分类、问答、对话、内容总结等。我们最为常见的ChatGPT、百度文心一言、讯飞星火等都属于大语言模型。

大语言模型LLM的基础架构

img

目前流行的大语言模型的架构基本都沿用了当前NLP领域最热门最有效的架构—Transformer架构。Transformer架构来源于谷歌在2017年发表的论文《Attention Is All You Need》,翻译过来就是注意力就是你需要的一切。

注意力机制是大语言模型的核心机制,它让模型在处理文本时,能够同时关注输入中的所有词汇,无论句子长短,都能精准捕捉到远距离的语义关联。例如,在解析“华为公司发布了新款手机”这句话时,模型能够迅速聚焦“华为”与“手机”之间的关系,忽略“公司”或“发布”等词的干扰,这种能力使得大语言模型在处理大段文本、复杂语境时能够真正理解其表达的核心含义。

此外,大语言模型通过位置编码(Positional Encoding)的巧妙设计,模型得以理解文本中的词语位置和顺序,准确把握语言的时序特性,同时保留了高效的并行计算能力。

大语言模型LLM的应用场景

在企业数字化领域中,大语言模型常见的应用场景如下:

01 知识库问答系统:

通过提问的方式,快速查找企业知识库中的内容,并通过大模型对内容进行总结提炼并给出解决方案;如设备故障查询、设备运检查询、员工智能助手等。

02 问答式BI系统:

通过问答的方式让大模型进行数据库查询,并返回数据结果、可视化图形等内容,供用户进行便捷的数据分析。

03 智能体系统:

将大模型的自然语言能力和小模型的垂直领域能力进行整合,形成企业智能体系统,满足设备故障预测、电力负荷预测、供应商评估分析等智能化应用和预测场景。

END

大模型的发展是当前人工智能时代科技进步的必然趋势,甚至可以媲美工业革命般的历史意义。大模型这种新技术也帮我们带来了更多生活、工作的有利工具,同时为企业带来了从数字化迈向智能化的可能。因此,在这个数字化发展日新月异的时代,我们只有主动拥抱这种变化,紧跟数字化、智能化潮流,才能确保我们在激烈的竞争中立于不败之地。

随着大模型的持续爆火,各行各业都在开发搭建属于自己企业的私有化大模型,那么势必会需要大量大模型人才,同时也会带来大批量的岗位?“雷军曾说过:站在风口,猪都能飞起来”可以说现在大模型就是当下风口,是一个可以改变自身的机会,就看我们能不能抓住了。

那么,我们该如何学习大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一、大模型全套的学习路线

学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。

L1级别:AI大模型时代的华丽登场
img
L2级别:AI大模型API应用开发工程
img
L3级别:大模型应用架构进阶实践
img
L4级别:大模型微调与私有化部署
img
一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。

以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

以上的AI大模型学习资料,都已上传至CSDN,需要的小伙伴可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

标签:入门,训练,AI,模型,就够,学习,文本,语言
From: https://blog.csdn.net/AIDAMOXING/article/details/142911103

相关文章

  • 【火山引擎】调用火山大模型的方法 | SDK安装 | 配置 | 客户端初始化 | 设置
    豆包(Doubao)是字节跳动研发的大规模预训练语言模型。目录1安装2配置访问凭证3客户端初始化4设置地域和访问域名5设置超时/重试次数1安装通过pip安装PYTHONSDK。pipinstall'volcengine-python-sdk[ark]'2配置访问凭证获取APIKey访问凭证具体步骤......
  • Linux从入门到精通-第二章(Linux的基础命令)
    文章目录前言一、linux的目录结构和命令基础1:linux的目录结构2:linux基础命令a:命令基础格式二、基础命令(上)1.ls命令2:cd命令和pwd命令a:切换目录命令cdb:pwd命令4:相对路径绝对路径和特殊路径5:mkdir命令三:基础命令(下)1:touch,cat,more命令a:touch命令b:cat命令c:more命......
  • Linux入门
    Linux入门文章目录Linux入门前言(为什么选择linux)一、linux启动过程二、Linux系统目录结构三、Linux文件基本属性五、Linuxvi/vim六、Linuxapt命令前言(为什么选择linux)一、linux启动过程Linux系统的启动过程可以分为5个阶段:1,内核的引导。当计算机打开电源......
  • 大模型与生成式AI结合:HelpLook引领零售增长新篇章
    近年来,零售行业在数字化、技术革新、经济波动及消费者需求多变的挑战下,展现出强大的适应性和创新力。AI技术的深度融合,正引领零售、电商、教育等领域,尤其是零售业步入一个生产力飞跃、客户至上的全新时代。企业亟需挖掘客户与产品数据的潜力,利用统一的知识管理平台与差异化战......
  • 分布式事务之Seata的AT模型
    在Seata的事务管理中有三个重要的角色:TC(TransactionCoordinator)-事务协调者:维护全局和分支事务的状态,协调全局事务提交或回滚。TM(TransactionManager)-事务管理器:定义全局事务的范围、开始全局事务、提交或回滚全局事务。RM(ResourceManager)-资源管理器:管理分......
  • UniApp入门教程
    UniAppX是一种用于构建跨平台应用程序的框架,它基于Vue.js并通过UniApp技术栈支持多种平台,如微信小程序、支付宝小程序、H5、Android和iOS。以下是UniAppX的一些关键特点和基础知识:UniAppX的特点跨平台支持:可以使用相同的代码基础,构建多个平台的应用。支持小程......
  • Seata的AT模型
    什么是seataSeata(SimpleExtensibleAutonomousTransactionArchitecture)是一个开源的分布式事务解决方案,它主要用于解决微服务架构下分布式事务问题。Seata提供了多种分布式事务解决方案,适用于不同场景,以下是其几种主要的解决方案:1.AT模式(AutomaticTransaction)特点:AT模......
  • 猫头虎分享:Python库 Selenium 的简介、安装、用法详解入门教程
    ......
  • openvino 大模型qwen2.5推理案例
    参看:https://github.com/openvinotoolkit/openvino.genai/releases/tag/2024.4.0.0https://github.com/TommyZihao/openvino_tonypi/blob/main/OpenVINO-0911/AIPC%E4%BB%A3%E7%A0%81/%E3%80%90B1%E3%80%91%E4%B8%89%E8%A1%8C%E4%BB%A3%E7%A0%81%E5%BC%80%E5%90%AF%E5%A4%......
  • 在K8S中,CNI模型有哪些?
    在Kubernetes(K8S)中,CNI(ContainerNetworkInterface,容器网络接口)模型是一个标准化的接口规范,用于在容器创建时配置和管理其网络连接。以下是关于K8S中CNI模型的详细介绍:1.CNI模型概述CNI是由CloudNativeComputingFoundation(CNCF)维护的一个标准,它定义了一组简单、统一的接口,允......