首页 > 其他分享 >学习Opencv的第八天——优化Opencv在执行时的性能

学习Opencv的第八天——优化Opencv在执行时的性能

时间:2024-10-11 20:22:24浏览次数:16  
标签:第八天 per Opencv loop loops 优化 cv best

1、使用OpenCV衡量性能

cv.getTickCount函数返回从参考事件(如打开机器的那一刻)到调用此函数那一刻之间的时钟周期数。因此,如果在函数执行之前和之后调用它,则会获得用于执行函数的时钟周期数。
cv.getTickFrequency函数返回时钟周期的频率或每秒的时钟周期数。因此,要找到执行时间(以秒为单位),你可以执行以下操作 :

e1 = cv.getTickCount()

# 你的执行代码
e2 = cv.getTickCount()
time = (e2 - e1)/ cv.getTickFrequency()

我们将通过以下示例进行演示。下面的示例应用中位数过滤,其内核的奇数范围为5到49。

img1 = cv.imread('lena.jpg')
e1 = cv.getTickCount()

for i in range(5,49,2):
	img1 = cv.medianBlur(img1,i)
e2 = cv.getTickCount()
t = (e2 - e1)/cv.getTickFrequency()
print(t)
# 得到的结果不一,取决于自己的电脑

2、OpenCV中的默认优化

许多 OpenCV 函数都是使用 SSE2、 AVX 等进行优化的。 它还包含未优化的代码。因此,如果我们的系统支持这些特性,我们就应该利用它们(几乎所有现代的处理器都支持它们)。在编译时默认启用它。因此,如果启用了 OpenCV,它将运行优化的代码,否则它将运行未优化的代码。你可以使用 cvUseoptimized 检查是否启用 / 禁用和 cvSetuseoptimized 以启用 / 禁用它。

"""以下的程序在jupyter notebook中运行"""

# 检查是否启用了优化
In [5]: cv.useOptimized()
Out[5]: True
In [6]: %timeit res = cv.medianBlur(img,49)
10 loops, best of 3: 31.8 ms per loop

# 关闭它
In [7]: cv.setUseOptimized(False)
In [8]: cv.useOptimized()
Out[8]: False
In [9]: %timeit res = cv.medianBlur(img,49)

10 loops, best of 3: 62.7 ms per loop

优化的中值滤波比未优化的版本快2倍。如果你检查其来源,你可以看到中值滤波是 SIMD 优化。因此,你可以使用它在代码顶部启用优化(请记住,它是默认启用的)

3、在IPython中衡量性能

有时你可能需要比较两个类似操作的性能。IPython为你提供了一个神奇的命令计时器来执行此操作。它会多次运行代码以获得更准确的结果。同样,它们适用于测量单行代码。
例如,你知道以下哪个加法运算更好,

  • x = 5; y = x**2, x = 5; y = x* * x, x = np.uint8([5]); y = x*x
  • y = np.square(x) ?

我们将在IPython shell中使用timeit得到答案。

In [10]: x = 5
In [11]: %测时 y=x**2
10000000 loops, best of 3: 73 ns per loop

In [12]: %测时 y=x*x
10000000 loops, best of 3: 58.3 ns per loop
In [15]: z = np.uint8([5])

In [17]: %测时 y=z*z
1000000 loops, best of 3: 1.25 us per loop

In [19]: %测时 y=np.square(z)
1000000 loops, best of 3: 1.16 us per loop

你可以看到x = 5; y = x * x最快,比Numpy快20倍左右。如果你还考虑阵列的创建,它可能会快100倍。牛逼吧?

我们将再尝试一个示例。这次,我们将比较cv.countNonZeronp.count_nonzero对于同一张图片的性能。

In [35]: %测时 z = cv.countNonZero(img)
100000 loops, best of 3: 15.8 us per loop

In [36]: %测时 z = np.count_nonzero(img)
1000 loops, best of 3: 370 us per loop

显然,OpenCV 函数比 Numpy 函数快近25倍 。

4、性能优化技术

有几种技术和编码方法可以充分利用 Python 和 Numpy 的最大性能。这里只注明相关信息,并提供重要信息来源的链接。这里要注意的主要事情是,首先尝试以一种简单的方式实现算法。一旦它运行起来,分析它,找到瓶颈并优化它们。

  1. 尽量避免在Python中使用循环,尤其是双/三重循环等。它们本来就很慢。
  2. 由于Numpy和OpenCV已针对向量运算进行了优化,因此将算法/代码向量化到最大程度。
  3. 利用缓存一致性。
  4. 除非需要,否则切勿创建数组的副本。尝试改用视图。数组复制是一项昂贵的操作。

即使执行了所有这些操作后,如果你的代码仍然很慢,或者不可避免地需要使用大循环,请使用Cython等其他库来使其更快。

标签:第八天,per,Opencv,loop,loops,优化,cv,best
From: https://blog.csdn.net/liehuf/article/details/142862528

相关文章