62.不同路径
机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。
动规五部曲
1、确定dp数组(dp table)以及下标的含义
dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。
2、确定递推公式
想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。
3、dp数组的初始化
首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。
4、确定遍历顺序
dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。
5、举例推导dp数组
代码如下:
class Solution {
public int uniquePaths(int m, int n) {
int[][] dp=new int[m][n];
for(int i=0;i<m;i++) dp[i][0]=1;
for(int i=0;i<n;i++) dp[0][i]=1;
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
}
return dp[m-1][n-1];
}
}
63. 不同路径 II
思路:这个题目和上一题的区别在于增加了一个障碍物,障碍物位置的可能路径为0。同时注意初始化的时候如果初始化的两边有一个障碍物,那么障碍物后面的格子路径数都为0。
代码如下:
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m=obstacleGrid.length;
int n=obstacleGrid[0].length;
int[][] dp=new int[m][n];
for(int i=0;i<m && obstacleGrid[i][0]==0;i++) dp[i][0]=1;
for(int j=0;j<n && obstacleGrid[0][j]==0;j++) dp[0][j]=1;
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
dp[i][j]=obstacleGrid[i][j]==0?dp[i-1][j]+dp[i][j-1]:0;
}
}
return dp[m-1][n-1];
}
}
343.整数拆分
思路:求一个数i拆分后乘积的最大值,考虑从让j从1开始遍历计算j*(i-j)和j*dp[i-j],也就是说看分成两部分和分成多个部分哪个更大,保留更大的那个。
动规五部曲
1、确定dp数组(dp table)以及下标的含义
dp[i]:分拆数字i,可以得到的最大乘积为dp[i]。
2、确定递推公式
递推公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
在取最大值的时候,还需要比较dp[i]是因为对于每一个j都会得到一个dp[i],最后需要保留最大值。
3、dp的初始化
dp[0] dp[1] ,无法拆分,不进行初始化,从dp[2] = 1开始。
4、确定遍历顺序
递归公式dp[i] 依靠 dp[i - j],所以遍历i一定是从前向后遍历,先有dp[i - j]再有dp[i]。
5、举例推导dp数组
注意:遍历j的时候遍历到i/2即可,因为前面是拆分更大的的数,当j>i/2时开始拆分小数,拆分大的数得到的乘积会更大。
代码如下:
class Solution {
public int integerBreak(int n) {
int[] dp=new int[n+1];
dp[2]=1;
for(int i=3;i<=n;i++){
for(int j=1;j<=i/2;j++){
dp[i]=Math.max(dp[i],Math.max(j*(i-j),j*dp[i-j]));
}
}
return dp[n];
}
}
96.不同的二叉搜索树
思路:dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量
元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量
元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量
元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量
所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]
动规五部曲
1、确定dp数组(dp table)以及下标的含义
dp[i] : 1到i为节点组成的二叉搜索树的个数为dp[i]。
2、确定递推公式
在上面的分析中,其实已经看出其递推关系, dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量] (j相当于是头结点的元素,从1遍历到i为止。)
所以递推公式:dp[i] += dp[j - 1] * dp[i - j]; ,j-1 为j为头结点左子树节点数量,i-j 为以j为头结点右子树节点数量。
3、dp数组如何初始化
初始化,只需要初始化dp[0]就可以了,从定义上来讲,空节点也是一棵二叉树,也是一棵二叉搜索树。初始化dp[0] = 1
4、确定遍历顺序
从递归公式:dp[i] += dp[j - 1] * dp[i - j]可以看出,节点数为i的状态是依靠 i之前节点数的状态。
5、举例推导dp数组
代码如下:
class Solution {
public int numTrees(int n) {
int[] dp=new int[n+1];
dp[0]=1;
for(int i=1;i<=n;i++){
for(int j=1;j<=i;j++){
dp[i]+=dp[j-1]*dp[i-j];
}
}
return dp[n];
}
}
注:代码虽然看起来很简单,但思路并不容易想到,应熟悉掌握思路的形成方式以及动规五部曲的使用。
标签:结点,遍历,int,不同,路径,搜索,为头,dp,96 From: https://blog.csdn.net/m0_51007517/article/details/142624342