首页 > 其他分享 >ElasticSearch初体验

ElasticSearch初体验

时间:2024-09-28 21:03:08浏览次数:5  
标签:初体验 string List Field ElasticSearch using new public

我的网站集成ElasticSearch初体验

 

   最近,我给我的网站(https://www.xiandanplay.com/)尝试集成了一下es来实现我的一个搜索功能,因为这个是我第一次了解运用elastic,所以如果有不对的地方,大家可以指出来,话不多说,先看看我的一个大致流程

      这里我采用的sdk的版本是Elastic.Clients.Elasticsearch, Version=8.0.0.0,官方的网址Installation | Elasticsearch .NET Client [8.0] | Elastic

      我的es最开始打算和我的应用程序一起部署到ubuntu上面,结果最后安装kibana的时候,各种问题,虽好无奈,只好和我的SqlServer一起安装到windows上面,对于一个2G内容的服务器来说,属实有点遭罪了。

1、配置es

 在es里面,我开启了密码认证。下面是我的配置

"Search": {
    "IsEnable": "true",
    "Uri": "http://127.0.0.1:9200/",
    "User": "123",
    "Password": "123"
  }
然后新增一个程序集

然后再ElasticsearchClient里面去写一个构造函数去配置es

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 using Core.Common; using Core.CPlatform; using Core.SearchEngine.Attr; using Elastic.Clients.Elasticsearch; using Elastic.Clients.Elasticsearch.IndexManagement; using Elastic.Transport;   namespace Core.SearchEngine.Client {     public class ElasticSearchClient : IElasticSearchClient     {         private ElasticsearchClient elasticsearchClient;         public ElasticSearchClient()         {             string uri = ConfigureProvider.configuration.GetSection("Search:Uri").Value;             string username = ConfigureProvider.configuration.GetSection("Search:User").Value;             string password = ConfigureProvider.configuration.GetSection("Search:Password").Value;             var settings = new ElasticsearchClientSettings(new Uri(uri))                           .Authentication(new BasicAuthentication(username, password)).DisableDirectStreaming();             elasticsearchClient = new ElasticsearchClient(settings);         }         public ElasticsearchClient GetClient()         {             return elasticsearchClient;         }     } }

   然后,我们看skd的官网有这个这个提示

 客户端应用程序应创建一个 该实例,该实例在整个应用程序中用于整个应用程序 辈子。在内部,客户端管理和维护与节点的 HTTP 连接, 重复使用它们以优化性能。如果您使用依赖项注入 容器中,客户端实例应注册到 单例生存期

所以我直接给它来一个AddSingleton

复制代码
using Core.SearchEngine.Client;
using Microsoft.Extensions.DependencyInjection;

namespace Core.SearchEngine
{
    public static class ConfigureSearchEngine
    {
        public static void AddSearchEngine(this IServiceCollection services)
        {
            services.AddSingleton<IElasticSearchClient, ElasticSearchClient>();
        }
    }
}
复制代码

2、提交文章并且同步到es

 然后就是同步文章到es了,我是先写入数据库,再同步到rabbitmq,通过事件总线(基于事件总线EventBus实现邮件推送功能)写入到es

先定义一个es模型

复制代码
using Core.SearchEngine.Attr;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using XianDan.Model.BizEnum;

namespace XianDan.Domain.Article
{
    [ElasticsearchIndex(IndexName ="t_article")]//自定义的特性,sdk并不包含这个特性
    public class Article_ES
    {
        public long Id { get; set; }
        /// <summary>
        /// 作者
        /// </summary>
        public string Author { get; set; }
        /// <summary>
        /// 标题                                                                               
        /// </summary>
        public string Title { get; set; }
        /// <summary>
        /// 标签
        /// </summary>
        public string Tag { get; set; }
        /// <summary>
        /// 简介                                                                              
        /// </summary>
        public string Description { get; set; }
        /// <summary>
        /// 内容
        /// </summary>
        public string ArticleContent { get; set; }
        /// <summary>
        /// 专栏
        /// </summary>
        public long ArticleCategoryId { get; set; }
        /// <summary>
        /// 是否原创
        /// </summary>
        public bool? IsOriginal { get; set; }
        /// <summary>
        /// 评论数
        /// </summary>
        public int? CommentCount { get; set; }
        /// <summary>
        /// 点赞数
        /// </summary>
        public int? PraiseCount { get; set; }
        /// <summary>
        /// 浏览次数
        /// </summary>
        public int? BrowserCount { get; set; }
        /// <summary>
        /// 收藏数量
        /// </summary>
        public int? CollectCount { get; set; }
        /// <summary>
        /// 创建时间
        /// </summary>
        public DateTime CreateTime { get; set; }
    }
}
复制代码

然后创建索引

复制代码
 string index = esArticleClient.GetIndexName(typeof(Article_ES));
            await esArticleClient.GetClient().Indices.CreateAsync<Article_ES>(index, s =>
            s.Mappings(
                x => x.Properties(
                    t => t.LongNumber(l => l.Id)
                         .Text(l=>l.Title,z=>z.Analyzer(ik_max_word))
                         .Keyword(l=>l.Author)
                         .Text(l=>l.Tag,z=>z.Analyzer(ik_max_word))
                         .Text(l=>l.Description,z=>z.Analyzer(ik_max_word))
                         .Text(l=>l.ArticleContent,z=>z.Analyzer(ik_max_word))
                         .LongNumber(l=>l.ArticleCategoryId)
                         .Boolean(l=>l.IsOriginal)
                         .IntegerNumber(l=>l.BrowserCount)
                         .IntegerNumber(l=>l.PraiseCount)
                         .IntegerNumber(l=>l.PraiseCount)
                         .IntegerNumber(l=>l.CollectCount)
                         .IntegerNumber(l=>l.CommentCount)
                         .Date(l=>l.CreateTime)
                    )
                )
            );
复制代码

然后每次增删改文章的时候写入到mq,例如

复制代码
 private async Task SendToMq(Article article, Operation operation)
        {
            ArticleEventData articleEventData = new ArticleEventData();
            articleEventData.Operation = operation;
            articleEventData.Article_ES = MapperUtil.Map<Article, Article_ES>(article);
            TaskRecord taskRecord = new TaskRecord();
            taskRecord.Id = CreateEntityId();
            taskRecord.TaskType = TaskRecordType.MQ;
            taskRecord.TaskName = "发送文章";
            taskRecord.TaskStartTime = DateTime.Now;
            taskRecord.TaskStatu = (int)MqMessageStatu.New;
            articleEventData.Unique = taskRecord.Id.ToString();
            taskRecord.TaskValue = JsonConvert.SerializeObject(articleEventData);
            await unitOfWork.GetRepository<TaskRecord>().InsertAsync(taskRecord);
            await unitOfWork.CommitAsync();
            try
            {
                eventBus.Publish(GetMqExchangeName(), ExchangeType.Direct, BizKey.ArticleQueueName, articleEventData);
            }
            catch (Exception ex)
            {
                var taskRecordRepository = unitOfWork.GetRepository<TaskRecord>();
                TaskRecord update = await taskRecordRepository.SelectByIdAsync(taskRecord.Id);
                update.TaskStatu = (int)MqMessageStatu.Fail;
                update.LastUpdateTime = DateTime.Now;
                update.TaskResult = "发送失败";
                update.AdditionalData = ex.Message;
                await taskRecordRepository.UpdateAsync(update);
                await unitOfWork.CommitAsync();
            }

        }
复制代码

mq订阅之后写入es,具体的增删改的方法就不写了吧

3、开始查询es

  等待写入文章之后,开始查询文章,这里sdk提供的查询的方法比较复杂,全都是通过lmbda一个个链式去拼接的,但是我又没有找到更好的方法,所以就先这样吧

   先创建一个集合存放查询的表达式

List<Action<QueryDescriptor<Article_ES>>> querys = new List<Action<QueryDescriptor<Article_ES>>>();

   然后定义一个几个需要查询的字段

   我这里使用MultiMatch来实现多个字段匹配同一个查询条件,并且指定使用ik_smart分词

复制代码
Field[] fields =
                {
                    new Field("title"),
                    new Field("tag"),
                    new Field("articleContent"),
                    new Field("description")
                };
 querys.Add(s => s.MultiMatch(y => y.Fields(Fields.FromFields(fields)).Analyzer(ik_smart).Query(keyword).Type(TextQueryType.MostFields)));
复制代码

定义查询结果高亮,给查询出来的匹配到的分词的字段添加标签,同时前端需要对这个样式处理,

:deep(.search-words) em {     color: #ee0f29;     font-style: initial; } 复制代码
 Dictionary<Field, HighlightField> highlightFields = new Dictionary<Field, HighlightField>();
            highlightFields.Add(new Field("title"), new HighlightField()
            {
                PreTags = new List<string> { "<em>" },
                PostTags = new List<string> { "</em>" },
            });
            highlightFields.Add(new Field("description"), new HighlightField()
            {
                PreTags = new List<string> { "<em>" },
                PostTags = new List<string> { "</em>" },
            });
            Highlight highlight = new Highlight()
            {
                Fields = highlightFields
            };
复制代码

为了提高查询的效率,我只查部分的字段

复制代码
 SourceFilter sourceFilter = new SourceFilter();
            sourceFilter.Includes = Fields.FromFields(new Field[] { "title", "id", "author", "description", "createTime", "browserCount", "commentCount" });
            SourceConfig sourceConfig = new SourceConfig(sourceFilter);
            Action<SearchRequestDescriptor<Article_ES>> configureRequest = s => s.Index(index)
            .From((homeArticleCondition.CurrentPage - 1) * homeArticleCondition.PageSize)
            .Size(homeArticleCondition.PageSize)
            .Query(x => x.Bool(y => y.Must(querys.ToArray())))
            .Source(sourceConfig)
             .Sort(y => y.Field(ht => ht.CreateTime, new FieldSort() { Order=SortOrder.Desc}))
复制代码

获取查询的分词结果

复制代码
 var analyzeIndexRequest = new AnalyzeIndexRequest
            {
                Text = new string[] { keyword },
                Analyzer = analyzer
            };
            var analyzeResponse = await elasticsearchClient.Indices.AnalyzeAsync(analyzeIndexRequest);
            if (analyzeResponse.Tokens == null)
                return new string[0];
            return analyzeResponse.Tokens.Select(s => s.Token).ToArray();
复制代码

到此,这个就是大致的查询结果,完整的如下

复制代码
 public async Task<Core.SearchEngine.Response.SearchResponse<Article_ES>> SelectArticle(HomeArticleCondition homeArticleCondition)
        {
            string keyword = homeArticleCondition.Keyword.Trim();
            bool isNumber = Regex.IsMatch(keyword, RegexPattern.IsNumberPattern);
            List<Action<QueryDescriptor<Article_ES>>> querys = new List<Action<QueryDescriptor<Article_ES>>>();
            if (isNumber)
            {
                querys.Add(s => s.Bool(x => x.Should(
                    should => should.Term(f => f.Field(z => z.Title).Value(keyword))
                    , should => should.Term(f => f.Field(z => z.Tag).Value(keyword))
                    , should => should.Term(f => f.Field(z => z.ArticleContent).Value(keyword))
                    )));
            }
            else
            {
                Field[] fields =
                {
                    new Field("title"),
                    new Field("tag"),
                    new Field("articleContent"),
                    new Field("description")
                };
                querys.Add(s => s.MultiMatch(y => y.Fields(Fields.FromFields(fields)).Analyzer(ik_smart).Query(keyword).Type(TextQueryType.MostFields)));
            }
            if (homeArticleCondition.ArticleCategoryId.HasValue)
            {
                querys.Add(s => s.Term(t => t.Field(f => f.ArticleCategoryId).Value(FieldValue.Long(homeArticleCondition.ArticleCategoryId.Value))));
            }
            string index = esArticleClient.GetIndexName(typeof(Article_ES));
            Dictionary<Field, HighlightField> highlightFields = new Dictionary<Field, HighlightField>();
            highlightFields.Add(new Field("title"), new HighlightField()
            {
                PreTags = new List<string> { "<em>" },
                PostTags = new List<string> { "</em>" },
            });
            highlightFields.Add(new Field("description"), new HighlightField()
            {
                PreTags = new List<string> { "<em>" },
                PostTags = new List<string> { "</em>" },
            });
            Highlight highlight = new Highlight()
            {
                Fields = highlightFields
            };
            SourceFilter sourceFilter = new SourceFilter();
            sourceFilter.Includes = Fields.FromFields(new Field[] { "title", "id", "author", "description", "createTime", "browserCount", "commentCount" });
            SourceConfig sourceConfig = new SourceConfig(sourceFilter);
            Action<SearchRequestDescriptor<Article_ES>> configureRequest = s => s.Index(index)
            .From((homeArticleCondition.CurrentPage - 1) * homeArticleCondition.PageSize)
            .Size(homeArticleCondition.PageSize)
            .Query(x => x.Bool(y => y.Must(querys.ToArray())))
            .Source(sourceConfig)
             .Sort(y => y.Field(ht => ht.CreateTime, new FieldSort() { Order=SortOrder.Desc})).Highlight(highlight);
            var resp = await esArticleClient.GetClient().SearchAsync<Article_ES>(configureRequest);
            foreach (var item in resp.Hits)
            {
                if (item.Highlight == null)
                    continue;
                foreach (var dict in item.Highlight)
                {
                    switch (dict.Key)
                    {
                        case "title":
                            item.Source.Title = string.Join("...", dict.Value);
                            break;
                        case "description":
                            item.Source.Description = string.Join("...", dict.Value);
                            break;

                    }
                }
            }
            string[] analyzeWords = await esArticleClient.AnalyzeAsync(homeArticleCondition.Keyword);
            List<Article_ES> articles = resp.Documents.ToList();
            return new Core.SearchEngine.Response.SearchResponse<Article_ES>(articles, analyzeWords);
        }
复制代码

4、演示效果    

搞完之后,发布部署,看看效果,分词这里要想做的像百度那样,估计目前来看非常有难度的

   那么这里我也向大家求教一下,如何使用SearchRequest封装多个查询条件,如下

SearchRequest searchRequest = new SearchRequest();
 searchRequest.From = 0;
searchRequest.Size = 10;
  searchRequest.Query=多个查询条件

因为我觉得这样代码读起来比lambda可读性高些,能更好的动态封装。

标签:初体验,string,List,Field,ElasticSearch,using,new,public
From: https://www.cnblogs.com/Leo_wl/p/18438388

相关文章

  • ElasticSearch倒排索引
    一、ElasticSearch基本概念        Elasticsearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTfulweb接口。Elasticsearch是用Java语言开发的,并作为Apache许可条款下的开放源码发布,是一种流行的企业级搜索引擎。Elasticsear......
  • thinkphp项目中集成使用 Elasticsearch
    文章目录前言1.安装Elasticsearch2.安装ElasticsearchPHP客户端3.配置Elasticsearch连接4.使用Elasticsearch5.注意事项总结前言在ThinkPHP项目中集成使用Elasticsearch,你需要遵循几个步骤来确保Elasticsearch能够顺利地在你的项目中运行。以下是一个......
  • centos7安装elasticsearch6.3.x集群
    一、环境信息及安装前准备主机角色(内存不要小于1G): 软件及版本(百度网盘链接地址和密码:链接:https://pan.baidu.com/s/17bYc8MRw54GWCQCXR6pKjg提取码:f6w8)  部署前操作:关闭防火墙,关闭selinux(生产环境按需关闭或打开)同步服务器时间,选择公网ntpd服务器或者自建ntpd服务器......
  • ELK中日志数据采集器Filebeat的安装和使用、Filebeat结合Logstash进行日志处理入Elast
    一、ELK中日志数据采集器Filebeat的安装和使用    Beats是数据采集的得力工具,Beats能够将数据转发至Logstash进行转换和解析。Filebeat是Beats中的一种,Filebeat是本地文件的日志数据采集器,可监控日志目录或特定日志文件(tailfile),并将它们转发给Elasticsearch或Logstats......
  • Elasticsearch基本概念及底层 【总结】
    随着业务的增长,数据与日俱增,这时为用户带来丰富的、便捷的搜索功能就迫在眉睫了。传统的数据库在处理文本搜索、模糊查询、海量数据统计分析的时候总会力不从心,所以在处理这些复杂的搜索需求时,我们更倾向于使用Elasticsearch搜索引擎。Elasticsearch是一个分布式、RESTf......
  • Elasticsearch知识整理(包含与mongoDb的区别)
    Elasticsearch概念整理Elasticsearch是位于ElasticStack核心的分布式搜索和分析引擎。Logstash和Beats有助于收集、聚合和丰富您的数据并将其存储在Elasticsearch中。Kibana使您能够以交互方式探索、可视化和分享对数据的见解,并管理和监控堆栈。Elasticsearch......
  • 文心智能体AI大师工坊初体验
    文心智能体AI大师工坊是百度等科技公司推出的一个智能体创作平台,它利用先进的人工智能技术,为创作者提供了一站式的智能体开发环境。在文心智能体AI大师工坊中,开发一个智能体通常需要经过以下步骤:注册登录:首先,用户需要在平台上注册并登录账号。创建智能体:点击创建智能体按钮,进入智能......
  • Elasticsearch 实战应用详解
    Elasticsearch是一个分布式搜索和分析引擎,广泛应用于各种场景,如全文搜索、日志与事件数据分析、实时数据流处理等。本文将详细介绍如何在实际项目中使用Elasticsearch,包括安装配置、基本操作、高级查询及优化策略。1.安装和配置安装Elasticsearch通过官方包管理器安装......
  • 豆包MarsCode初体验,用 React 创建一个最经典的贪吃蛇游戏
    以下是「 豆包MarsCode 体验官」优秀文章,作者Find。背景在人工智能快速发展的时代,大模型(LLM)只要有足够的算力和数据就可以做到任何的事情,甚至可以模拟出另一个地球。LLM作为一个革命化的科技,可以取代很多岗位,甚至可以让人类达到“躺着领钱的时代”。Marscode作为一个新推出的IDE......
  • 【Elasticsearch系列七】索引 crud
    ......