首页 > 其他分享 >深入探索 RUM 与全链路追踪:优化数字体验的利器

深入探索 RUM 与全链路追踪:优化数字体验的利器

时间:2024-09-25 17:23:43浏览次数:1  
标签:协议 Trace RUM 透传 利器 https 链路

作者:梅光辉(重彦)

背景介绍

随着可观测技术的持续演进,多数企业已广泛采用 APM、Tracing 及 Logging 解决方案,以此强化业务监控能力,尤其在互联网行业,产品的体验直接关系着用户的口碑,决定了市场命运,使得 RUM(真实用户监控)日益受到重视。然而,在面对由后端服务故障引起的体验问题时(例如,后端接口延迟引发的 APP 白屏或页面加载缓慢),如何有效的关联 RUM、APM 监控数据以及 Tracing 上下文,辅助问题排查以及影响面评估,成为一大挑战。

解决这一问题的关键在于如何实现从用户端到服务端的全链路打通,而 RUM 作为贴近用户的监测起点,天然适合担当此角色。本文旨在探讨端到端链路打通的解决方案,并分享 RUM 与端到端链路集成的最佳实践。

端到端链路打通的难点

技术架构复杂,多端、跨语言、跨团队场景多

一个典型的互联网应用,通常会包含用户终端(Web & 小程序/Android/iOS)、网关代理层(ALB/MSE/Ingress/Nginx)、后端服务(Java/Go/Python)以及中间件(数据库、消息、缓存)等部分,涵盖了前、后端开发以及中间件、运维团队,实现全链路打通,往往会面临以下问题:

1)不同的链路追踪工具,支持的主流语言、框架不一致,对跨端场景不友好;

2)生产环境实施,需要前后端开发人员、中间件以及运维同学通力协作,接入成本较高;

3)链路打通之后,如何与 RUM、APM 等监控数据、以及日志打通,方便问题排查与定界。

不同协议无法兼容,生产环境难以平滑切换

针对端到端链路打通场景,目前,主流的链路追踪项目,比如:OpenTelemetry、Zipkin、Jaeger、Skywalking 等,都有定义各自的链路传播协议:

  • OpenTelemetry:w3c 透传协议
  • Skywalking:sw8(v3)透传协议
  • ZipKin:b3/b3multi 透传协议
  • Jaeger:jaeger 透传协议

但是,不同协议间存在兼容性问题,比如:OpenTelemetry 和 Skywalking 就无法相互兼容,而且不同厂商和开源项目对各透传协议的支持力度也不一致:

因此,通常情况下,想要串联起完整的调用链路,就要求后端系统必须采用相同或者兼容的 Trace 协议,前端应用也需要引入对应的 SDK,并且,中间链路各个环节,比如:网关代理层,也必须保证协议 Header 的透传。

基于 OTel 与 W3C 的端到端链路解决方案

关注可观测领域的同学应该知道,近些年行业发展的一个显著趋势,是不断向标准化和开源生态方向整合,上文提到的 OpenTelemetry 项目和 W3C Trace Context 标准,都是这一趋势的代表项目,以下通过链路透传场景、链路透传协议以及跨协议兼容几个方面介绍基于 OTel 和 W3C Trace Context 的端到到链路解决方案。

链路透传场景

OpenTelemetry 使用一种称为“传播器”(Propagators)的机制来实现在不同环境和协议中 Trace 上下文的透传,确保在一个分布式系统中能够追踪完整的请求链路。无论是进程内还是进程间的通信,其核心都是通过特定的格式在请求头中携带必要的追踪信息。下面是 OpenTelemetry 如何在不同场景下实现 Trace 上下文透传的方案介绍:

进程内透传

  • 单线程场景: 在单线程环境下,由于所有操作都在同一个线程上执行,因此可以直接通过局部变量(比如在 Java 语言中,通常会采用 ThreadLocal)来存储当前 Span 信息,当新的操作开始时,可以将当前 Scope 的 Span 作为 Parent Span,从而传递了 Trace 上下文;
  • 多线程/异步场景: 在多线程异步编程场景,则需要在任务提交或异步调用时显式的携带Span上下文,比如:OpenTelemetry 就提供了 API(如:context.with(currentSpan))来创建一个带有特定 Span 的新 Context,并在此 Context 的作用域内执行代码,这样,即使是异步执行,也能确保 Trace 上下文可以被正确的传递和应用。

进程间透传

  • HTTP 场景: 通常是将 Trace 上下文编码到 HTTP 请求头中,比如:上文提到的 W3C Trace Context 标准,就采用了 traceparent、tracestate 两个 header 来传递 Trace 上下文信息,客户端在发起请求时,会自动将当前的 Trace 信息添加到 HTTP 头中;服务端接收到请求后,通过相应的传播器解析这些头部,恢复或延续 Trace 上下文。
  • RPC 和其他自定义协议场景: 对于非 HTTP 协议,如 gRPC、MQTT 等,原理类似,也是通过协议允许的头部或元数据字段来携带 Trace 上下文信息。OpenTelemetry 提供了多种传播器(如 JaegerPropagator、B3Propagator、W3CBaggagePropagator 等),可以根据具体协议的要求选择合适的传播器来序列化和反序列化 Trace 上下文。
  • 消息队列场景: 在消息队列场景中,通常将 Trace ID、Span ID 等信息作为消息的属性或元数据随消息一起发送,接收方可以从消息中提取这些信息并恢复上下文。
  • 数据库场景: 目前主流的数据库,比如:MySQL、PG 等,底层协议层面尚未提供相应扩展机制,因此绝大数链路追踪工具,包括:OpenTelemetry,均采用了客户端插桩的方式,仅在应用侧记录耗时、以及执行 SQL 等关键信息。

链路透传协议

这里重点介绍下 W3C Trace Contxt,也是目前国内外使用最多的一个协议标准,W3C Trace Context 是 W3C 组织所推出的一个规范,旨在规范分布式追踪中跟踪信息的传播格式,除了 HTTP 场景以外,也支持二进制、以及消息等场景(目前还处于 Draft 状态),详见 W3C 官网 [ 1]

W3C Trace Context(HTTP Protocol)

Trace Context 规范主要定义了两个 HTTP 头部字段:traceparent 和 tracestate。

  1. traceparent:采用扩展的巴科斯范式(ABNF)定义,由四个部分组成:
traceparent: {version}-{trace-id}-{parent-id}-{trace-flags}
  • version:2 位十六进制数字,表示当前 traceparent 头部字段的版本,如:00;
  • trace-id:32 位十六进制数字,用于表示整个 Trace 链路的唯一 ID,如:ec95e5a118ce450eac82ab9ec530b287;
  • parent-id:16 位十六进制数字,用于表示当前请求或操作的唯一 ID,如:a7be58f9cd8dd80d;
  • trace-flags:2 位十六进制数字,用于控制追踪标志,包含采样、追踪级别等,如:01。
  1. tracestate:是对 traceparent 字段的扩展,用于携带额外的、服务间可能需要的追踪状态信息,并且是 traceparent 字段的伴随标头。
tracestate: {vendor1Key}={vendor1Value},{vendor2Key}={vendor2Value},...

链路传播器

OpenTelemetry 项目几乎已经支持了除 sw8 以外大多数透传协议,并且还内置了一些国内外云厂商的协议传播器,同时 Opentelemetry 也支持自定义 Propagator,我们可以组合不同的 Propagator,也可以基于 Opentelemetry 的 TextMapPropagator 实现一个自己的 Propagator。

RUM 集成端到端链路的最佳实践

为什么 RUM 适合作为链路入口

前面提到,RUM 作为用户请求的入口,在解决链路打通问题上,天生就具备优势。一个比较直观的解法,就是直接在 RUM 端侧生成链路追踪的 TraceID,然后通过透传协议,以 HTTP Header 的形式将 Trace 上下文传递给后端,后端应用就可以基于协议 Header,来初始化 Trace 上下文,并在后端系统调用中进行传递。

相比直接在端侧集成开源协议 SDK,RUM 集成链路追踪还具有以下优势:

  • 优势一: 可以将用户体检监控中的错误、缓慢、以及用户会话数据,与链路追踪数据联动,实现端到端分析,比如:某个用户请求,在端侧看可能很慢,但是后端链路显示耗时并不长,此时,结合 RUM 与后端调用链数据,最终发现是 DNS、网络层耗时较长;
  • 优势二: 无需在端侧集成开源协议 SDK,也无需关心端侧链路数据上报的问题,尤其对于一些存在多个后端服务域名,并且协议还不相同的应用,可以在 RUM 产品中为不同域名设置不同的透传协议,一次接入即可实现一站式监控体验,极大降低了接入成本。

RUM 与 Trace 数据模型的融合

目前主流的 RUM 开源项目以及国内外云厂商,数据模型上基本都是以用户、会话作为核心,以 Event 的方式记录前端用户的页面加载、资源请求(包含 API 与静态资源),同时也会包含请求错误、JS 错误、崩溃、卡顿、自定义错误等异常数据,通过 API 请求,我们可以将 RUM 数据与后端调用链数据进行关联,从而获得从端侧用户到后端服务的完整链路,而 RUM Event 数据模型和 Trace Span 数据模型本身其实也是可以相互转换的。

RUM 与端到端链路集成的两种方案

方案一:RUM 转 Span,构建完整 Trace 链路

RUM 转 Trace 的方案,通常是在端侧应用中接入 RUM 探针,通过 RUM 进行协议透传,同时记录 Trace 上下文信息,并在 RUM 数据接收侧,将 RUM Event 数据转换为标准的 Trace Span 数据,并将 RUM 相关信息(如:user、session、view 等)注入到 Span Attributes 中,这么做的好处是:我们可以在 RUM 与 Trace 中实现互联互通,从而在线上问题排查中,可以方便的进行根因定位,并直观的评估对用户侧产生的影响。

方案二:Span 转 RUM,基于 OTel 的扩展机制构建

Span 转 RUM 的方案,则是在端侧应用中接入 OTel SDK,然后通过 OTel 提供的扩展机制,在 OTel Collector 中实现一个自定义的 rum exporter,将 OTel SDK 上报的 Span 数据转换为 RUM Event 数据,当然,你也可以在端侧同时引入 RUM 与 OTel 的 SDK,然后通过 OTel SDK 中提供 SpanProcessor 进行扩展,像开源 RUM 项目 Sentry 就采用的是这种方案。

但是这个方案对于 RUM 的数据模型有一定要求,最好的方式就是 OTel 能够支持RUM数据模型,目前 OTel 社区也有相关的小组,正在往这个方向努力,具体可以参考 Github 上这个 Issue:https://github.com/open-telemetry/oteps/issues/169

RUM 集成端到端链路的实际应用

全链路洞察

RUM 与 Trace 链路打通后,一个最直观的应用场景就是全链路洞察,可以实现故障根因的快速定界,无需跳转产品和页面,这一点对于一些角色职责分离的大型团队比较有价值。

影响面分析

另外一个比较重要的应用场景,就是当后端系统出现问题时,可以记录故障期间用户侧的所有操作,同时结合调用链可以方便的定位出哪些请求受到了后端故障影响,从而精准地定位出故障的影响面,包含受影响的客户列表、终端设备、运营商、地域等信息。在某些情况下,还可以帮助我们判断线上问题处理优先级。

总结展望

本文主要介绍了基于 OpenTeletemetry 与 W3C 协议构建端到端全链路的解决方案,同时探讨了 RUM 与端到端链路集成的最佳实践,希望可以为大家在生产环境落地应用提供一些参考。实际上,除了上面介绍到的全链路洞察根因定位,以及影响面分析外,RUM 与全链路追踪的应用场景还有很多,比如:对于一些生产环境难以复现的问题,可以结合 RUM 的会话重放功能,进行问题复现等,对于解决线上疑难问题,优化用户体验,绝对是一大利器。

相关链接:

[1] W3C 官网

https://w3c.github.io/trace-context-protocols-registry/

[2] W3C Trace Context

https://www.w3.org/TR/trace-context/

[3] W3C Baggage

https://www.w3.org/TR/baggage/

[4] B3

https://github.com/openzipkin/b3-propagation

[5] B3Multi

https://github.com/openzipkin/b3-propagation

[6] Jaeger

https://www.jaegertracing.io/docs/1.21/client-libraries/#propagation-format

[7] OpenTracing

https://github.com/opentracing?q=basic&type=&language=

[8] AWS X-Ray

https://docs.aws.amazon.com/xray/latest/devguide/xray-concepts.html#xray-concepts-tracingheader

[9] 相关文档

https://www.w3.org/TR/trace-context/

[10] 相关文档

https://github.com/openzipkin/b3-propagation

[11] 相关文档

https://github.com/openzipkin/b3-propagation

[12] 相关文档

https://www.jaegertracing.io/docs/1.21/client-libraries/#propagation-format

[13] 相关文档

https://skyapm.github.io/document-cn-translation-of-skywalking/zh/8.0.0/protocols/Skywalking-Cross-Process-Propagation-Headers-Protocol-v3.html

参考文章:

[1] https://opentelemetry.io/docs/

[2] https://www.w3.org/TR/trace-context/

[3] https://w3c.github.io/trace-context-protocols-registry/

[4] https://docs.google.com/document/d/16Vsdh-DM72AfMg_FIt9yT9ExEWF4A_vRbQ3jRNBe09w/edit?pli=1

[5] https://develop.sentry.dev/sdk/telemetry/traces/opentelemetry/#step-1-implement-the-sentryspanprocessor-on-your-sdk

标签:协议,Trace,RUM,透传,利器,https,链路
From: https://www.cnblogs.com/alisystemsoftware/p/18431763

相关文章

  • 【C#生态园】选择合适的自动化工具:满足团队需求的利器大比拼
    自动化服务器和工具全面比较:选择最适合你团队的利器前言在当今软件开发领域,持续集成和持续部署已经成为了提高效率、降低风险的关键利器。各种自动化服务器和工具应运而生,以满足不同团队和项目的需求。本文将介绍几种流行的自动化服务器和工具,包括Jenkins、TeamCity、Oct......
  • 【基础岛·第1关】书生大模型全链路开源体系
    目录过往一年历程1.核心技术2.大海捞针实验3、人机解决方式的差别全链路开源生态1数据2开源数据处理工具箱3预训练4微调xtuner5评测6部署7智能体8项目过往一年历程7b可以应对中小企业业务,但20b才有涌现现象1.核心技术2.大海捞针实验超长文本内容中的问答正确度3......
  • .NET 高级音频处理利器 NAudio 库
    目录前言项目介绍项目说明常用类常用接口项目示例1、创建项目2、NuGet安装NAudio与NAduio.Core包3、使用说明4、录制文件代码5、播放文件代码6、注意项目总结最后前言NAudio是一个开源音频库,用于在C#应用程序中处理音频。它提供了丰富的属性和方法,使我......
  • 推荐7款.NET开源且功能强大图表库,效率提升利器!
    前言今天大姚给大家推荐7款.NET开源、免费、高效、功能强大图表库,这些库旨在助力你迅速实现图表开发需求,提升项目效率与质量。LiveCharts2LiveCharts2是一个.NET开源、简单、灵活、交互式且功能强大的.NET图表、地图和仪表库,现在几乎可以在任何地方运行如:Maui、UnoPlatform、Blazo......
  • 并发处理的利器:深入探讨锁分离设计+6大分离场景(高并发篇)
    锁分离设计的本质在于将对共享资源的访问操作根据其类型或性质区分开来,并为每种操作提供独立的锁。这种设计背景通常源于对高并发系统的需求,其中多个线程或进程需要频繁地对共享资源进行读写或其他操作。在传统的锁机制中,所有操作都可能使用同一把锁,这在高并发环境下会导致严重的......
  • S5cmd一个小文件上传对象利器
    使用s5cmd:高效上传小文件到S3的利器在云存储场景中,AmazonS3是非常常用的对象存储服务。但对于小文件的高效上传和管理,默认的AWSCLI可能并不是最优的工具。这时,一个名为s5cmd的工具因其轻量、快速的特性脱颖而出。特别是当你需要批量上传或管理大量小文件时,s5cmd......
  • 适配器模式详解:解决接口不兼容的利器
    适配器模式是一种结构型设计模式,它允许将一个类的接口转换成客户希望的另一个接口,使得原本由于接口不兼容而不能一起工作的类可以一起工作。适配器模式主要用于解决“接口不兼容”问题。一,适配器模式的结构适配器模式主要包含以下几个部分:目标接口(Target):客户期望的接口。......
  • 故障排查之利器:Windows系统的日志功能与管理
    文章目录前言一、系统日志的基本概念二、系统日志的类型与详细分析(一)事件日志的详细结构(二)事件日志类型(三)事件日志类型三、如何查看和分析系统日志(一)事件查看器(二)可靠性监视器(三)筛选与过滤(四)自定义视图(五)常见事件ID(六)自动化工具与策略四、系统日志的管理与维护(一)设置日......
  • 深入理解装饰器模式:动态扩展对象功能的利器
    装饰器模式(DecoratorPattern)是一种结构型设计模式,它允许向一个现有的对象添加新的功能,同时又不改变其结构。这种模式创建了一个装饰类,用来包装原有的类,并在保持类方法签名完整的前提下,提供额外的功能。装饰器模式通过创建一个装饰类包装原有的类,从而在不改变原有类的基......
  • L1- 书生大模型全链路开源体系 关卡
    一、总结要点-......