首页 > 其他分享 >【智能流体力学 1/3理论课程2/3实操课程】深度学习技术在流体力学中的应用与实操培训

【智能流体力学 1/3理论课程2/3实操课程】深度学习技术在流体力学中的应用与实操培训

时间:2024-09-24 15:21:07浏览次数:10  
标签:流体力学 课程 Python OpenFOAM Fluent 源码 实操

智能流体力学及其仿真技术应用实战

前沿背景

在当今科学技术快速发展的背景下,流体力学和计算流体力学(CFD)正经历着深刻的变革。传统的流体仿真技术已无法满足日益复杂和高精度的工程需求,而深度学习和人工智能技术的飞速进步,为流体力学的研究和应用提供了新的解决方案。以下是一些前沿背景,培训课程亮点:
AI与流体力学的融合:随着人工智能和深度学习技术的进步,机器学习驱动的流体力学模型已成为前沿研究热点。结合数据驱动的方法,AI可以显著提高流体仿真模型的精度和计算效率。通过AI算法,能够对复杂的流动现象(如湍流、气泡动力学等)进行更精准的预测和控制,为工业和科研应用提供强大的支持。

智能仿真技术的应用:OpenFOAM、ANSYS Fluent等高级仿真工具正在不断进化,集成了更多的人工智能算法和数据分析功能。这些工具的使用,不仅可以提高流体仿真的效率和准确性,还能在实际应用中提供更加智能化的解决方案。

AI与仿真技术的结合,为流体力学研究带来了新的可能性,例如基于深度学习的流场重建、优化和预测模型,正在改变传统的研究和开发模式。

物理信息神经网络(PINN)的前景:PINNs作为一种新兴的深度学习技术,将物理规律与神经网络模型结合,实现了对复杂流体问题的高效求解。这种方法不仅能减少对大量数据的依赖,还能通过物理约束提高模型的泛化能力。

PINNs在解决Navier-Stokes方程等基本流体力学问题上表现出色,为研究人员提供了新的工具来探索流体动力学的未知领域。

多平台技术整合:培训课程涵盖了多种先进的技术平台,包括Python、OpenFOAM、ANSYS Fluent等,学员将有机会在真实的开发环境中进行实操,这种跨平台技术整合的学习方式,能显著提高学员的实战能力和竞争力。
在这里插入图片描述

课程目标

本培训课程旨在提供从基础理论到实践操作的全面学习,帮助学员掌握智能流体力学及其仿真技术的前沿知识和技能。具体课程目标包括:

深入理解流体力学与数据驱动方法的结合:掌握数据驱动方法与传统CFD技术的区别及应用场景。学习如何使用Python处理CFD数据,并应用深度学习技术解决实际的CFD问题。掌握物理信息神经网络(PINN)及其应用:理解PINN的基本原理和模型结构,掌握如何将PINN应用于流体力学中的复杂问题。学习使用PINN解决稳态与非稳态流动问题,以及将PINN与数据驱动方法结合的解决方案。

熟练运用OpenFOAM与ANSYS Fluent进行智能仿真:掌握OpenFOAM和ANSYS Fluent的安装、配置及基础操作,了解其在流体仿真中的应用。学会将AI算法与OpenFOAM、ANSYS Fluent的仿真数据融合,进行深度学习模型训练和优化。

实战训练与项目实践:通过具体的案例和源码实操,提升学员在实际项目中的应用能力。深入分析各类流体力学问题,包括湍流、翼型流动、扩散模型等,并运用深度学习技术进行高保真流场重建与预测。

培养综合应用能力:将学到的理论知识和技能应用于实际项目中,解决真实的工程问题。提高学员在智能流体力学领域的研究与开发能力,为未来的科研或工程项目打下坚实的基础。

培训内容

一站式打通从流体技术仿真融合深度学习模型构建的整个流程;本培训1/3是基础知识理论课程,剩余2/3全是实操。其中,包括仿真操作、部分前言论文算法及其源码原理剖析。本文涉及到的深度学习模型在实操过程中会有具体的案例代码实现,并且针对算法原理再进行剖析。

课前安装要求: Anaconda3+OpenFOAM(Linux)+ ANSYS Fluent+PyCharm
所需开发平台:Windows10以上、Linux系统(Ubuntu 18.04以上)

第一天:计算流体与机器学习数据驱动方法

  1. 数据驱动方法及其应用
    o 数据驱动技术与传统计算流体力学(CFD)
    o 使用Python处理CFD数据的具体方法与技巧【Python源码实操】
    o 使用深度学习技术求解数值CFD问题【Python源码实操】
  2. 机器学习驱动CFD
    o 使用有限体积法进行CFD数值模拟的基本概念和实践【Python源码实操】
    o 传统机器学习方法与流体力学结合的实际应用案例【Python源码实操】
    o 在CFD中相干结构的识别与分析【Python源码实操】
    o 流体动力学中的Reduced-order建模技术【Python源码实操】
    o CFDBench大规模基准项目实践【剖析论文+Python源码实操】

第二天:物理信息神经网络(PINN)在流体力学中的应用

  1. 物理信息神经网络(PINN)原理与应用
    o 什么是 PINN?
    o PINNs的基本原理与模型结构【剖析论文+Python源码实操】
    o 使用PINN模型求解N-S方程模拟复杂流体问题【Python源码实操】
    o PINNs结合数据驱动方法的解决方案
  2. PINN项目实战与算法剖析
    o PINN求解稳态与非稳态流动问题【剖析论文+Python源码实操】
    o 湍流涡粘模型与PINNs应用于翼型流动【剖析论文+Python源码实操】
    o Turbulent-Flow-Net深度学习模型【Python源码实操】
    在这里插入图片描述
    在这里插入图片描述

第三天:智能流体力学与OpenFOAM仿真技术相结合

  1. OpenFOAM仿真技术基础
    o OpenFOAM环境的安装与配置【实操】
    o OpenFOAM框架结构与模块组成【实操】
    o 基于Paraview流体仿真可视化分析方法【实操】
    o OpenFOAM数据驱动、转化和交互方法【Python源码实操】
    o 基于在Linux平台的Python与OpenFOAM交互式实现方法【Python源码实操】
  2. AI算法融合OpenFOAM流体仿真实战【神经网络+LSTM+深度强化学习】
    o 深入操作OpenFOAM进行流体仿真【Python源码实操】
    o 从仿真数据中提取关键特征进行分析【Python源码实操】
    o 神经网络模型与OpenFOAM仿真数据融合训练实战【Python源码实操】
    o 深度强化学习与OpenFOAM的应用案例【Python源码实操】
    在这里插入图片描述

第四天:ANSYS Fluent仿真与智能流体力学相结合【交互式仿真+神经网络+LSTM】

  1. Fluent仿真与框架解析
    o ANSYS Fluent的安装与配置【实操】
    o Fluent架构与功能模块剖析【实操】
    o 使用Python与ANSYS Fluent进行交互【Python源码实操】
  2. Fluent数据仿真融合AI算法实战
    o Fluent立体数据的采集与分析【Python源码实操】
    o 使用Fluent数据训练神经网络模型进行流体力学预测
    【神经网络模型+Python源码实操】
    o 基于Fluent仿真数据与AI融合的实际应用案例
    【LSTM模型实现+Python源码实操】

第五天:智能流体力学项目实战与深度学习应用【剖析论文+Python源码实操】

在这里插入图片描述

  1. 基于U-Net的流体力学
    o U-Net网络结构及其深度学习原理【剖析论文+Python源码实操】
    o 流场数据的预处理与特征提取【Python源码实操】
    o 使用U-Net模型进行流场预测、重构与优化【剖析论文+Python源码实操】
  2. 基于图神经网络(GNN)的流体力学
    o GNN原理应用于流体力学的思想
    o GNN基础与CFD问题的图结构建模【剖析论文+Python源码实操】
    o 基于GNN的流场预测与性能评估【剖析论文+Python源码实操】
  3. 高保真流场重建与扩散模型
    o 扩散模型的基本原理与应用【剖析论文+Python源码实操】
    o 扩散概率模型在翼型流动模拟中的应用【剖析论文+Python源码实操】
  4. 剖析CNN算法在翼型周围流场中的快速预测方法【剖析论文+Python源码实操】
  5. 神经网络在非稳定不可压缩流体动力学预测中的应用【剖析论文+Python源码实操】
  6. 基于卷积编码器-解码器的 transformer 模型用于湍流数据驱动时空学习方法【剖析论文+Python源码实操】

在这里插入图片描述
在这里插入图片描述

baoming TEL: 一八八四五七二七二八七
说明来源有优惠:https://mp.weixin.qq.com/s/LK03vk-R9XzPyZkcddY6uQ

深度学习流体力学课程时间:
2024.11.02-----2024.11.03全天授课(上午9:00-11:30下午13:30-17:00)
2024.11.06-----2024.11.07晚上授课(晚上19:00-22:00)
2024.11.09-----2024.11.10全天授课(上午9:00-11:30下午13:30-17:00)
腾讯会议 线上授课(共五天授课时间 提供全程回放视频)

标签:流体力学,课程,Python,OpenFOAM,Fluent,源码,实操
From: https://blog.csdn.net/weixin_41194129/article/details/142491106

相关文章

  • 计算流体力学
    一、流体力学基本概念1.连续介质假定流体连续的充满整个空间(流体质点:微观充分大、宏观充分小)克努森数:2.梯度2.1标量求梯度梯度计算规律:2.2向量求梯度3.散度3.1向量求散度单位体积的改变率散打(散度为点积,要打点)3.2张量求散度4.旋度(一般不用)5.张量......
  • <免费开题>团员管理系统|全套源码+文章lw+毕业设计+课程设计+数据库+ppt
    <免费开题>团员管理系统|全套源码+文章lw+毕业设计+课程设计+数据库+ppt1.2课题研究内容对于团员管理系统来说,其实我们所要研究的内容并不复杂,首先是要通过不同的角色来区分,那么肯定会有学生、管理员、辅导员等三种角色。那么对于这三种角色而言,每一种角色都有着自己的意义......
  • ToEasy利用99元阿里云服务器内网穿透的实操过程
    一、准备工作:1、阿里云99元服务器(安装Windows)或者其他windows云服务器2、frp内网穿透软件3、数据库MSSQL2014绿色版4、ToEasy服务器和客户端软件二、内网穿透设置解压frp软件后,打开配置文件frps.toml和frpc.toml进行设置。1、服务端(frps.toml)#bindAddr="123.34.32.33"......
  • 实战篇 | Homebrew 安装使用(Ubuntu 完整实操版)
    支持绝大部分系统软件服务的安装,如ollama,ffmpeg,mysql等在非root用户下安装使用,mac和linux(ubuntu)上都可以使用1.操作步骤1.1确认curl和git是否已安装(可跳过)#分别查看是否安装curl和git(输出版本号则已安装)curl-Vgit-v注:若未安装,可以通过类似......
  • 【毕业论文+源码】基于ASP的课程指导平台的开发
    引 言随着全球信息化技术的兴起,特别是Internet的日益普及,解决了信息Internet上传递的问题,建立了一个组织得很好的信息结构框架,使得Internet用户能够在Internet上的任何一个终端,以一种简单、统一的方式来访问超媒体文档。传统的以“教”为中心的教学设计和以“学”为中心的......
  • 学习高校课程-软件工程-理解需求(ch8)
    REQUIREMENTSENGINEERING需求工程Requirementsengineeringencompassessevendistincttasks:inception,elicitation,elaboration,negotiation,specification,validation,andmanagementInception启动Atprojectinception,youestablishabasicunderstandingof......
  • 基于springboot+vue的高校学生考勤系统-可用于计算机毕设-课程设计-练手学习
    博主简介:......
  • 人工智能第四次课程
    上课首先回顾了一下之前学习的检索模式然后引出PDF转换器老师说工具是为了方便人我觉得是真理首先推荐了CAJViewer9.2第二个工具为lightpdf这个工具没有任何使用时间与次数限制第三个工具为PDFCandy接下来学习关于图片的操作首先学习了巧去水印用PS仿制图章工具去除......
  • Python 虚拟环境安装使用(Anaconda 完整实操版)
    1.安装安装anaconda(包含python和pip等,支持创建及管理多个python虚拟环境)注:miniconda可能也可以,但是没用过,优先anaconda1.1linux1.1.1ubuntuMac、Windows及其他Linux系统类似注:一般不使用root用户,使用其他非root用户(方便使用homebrew等)Anaconda3......
  • 学习高校课程-软件工程-敏捷开发(ch5)
    WHATISAGILITY什么是敏捷性Anagileteamisanimbleteamabletoappropriatelyrespondtochanges.Changeiswhatsoftwaredevelopmentisverymuchabout.Changesinthesoftwarebeingbuilt,changestotheteammembers,changesbecauseofnewtechnology,......