优化转移DP
题意
Aloha 要骑单车,可以单独花费 \(r\) 元骑 1 次,也可以购买某一种单车卡,第 \(i\) 种单车卡 \(c_i\) 元,若在第 \(t\) 天购买,可以在 \([t,t+d_i-1]\) 天使用,并且最多使用 \(k_i\) 次
给出 Aloha 一段时间内的单车使用情况,求出他需要的最小花费
给出
-
\(n\;(1<=n<=500)\), 单车卡的种类
-
\(m\;(1<=m<=10^5)\), \(m\) 条使用记录
-
\(r\;(1<=r<=10^9)\), 单独骑 1 次的花费
-
\(n\) 行,每行有 \(1<=d_i,k_i,c_i<=10^9\), 第 \(i\) 种单车卡的有效期、使用次数、价格
-
\(m\) 行,每行有 \(0<=p_i<=10^9,\;0<=q_i<=3e5,\;\sum\limits_{i=1}^mq_i<=3e5\)
表示在第 \(p_i\) 天骑了 \(q_i\) 次
思路
-
看上去就是 DP,观察数据范围,很多数据的值域过大,只有 \(n\) 和 \(\sum q_i\) 可能与 DP 复杂度有关
-
求出每次骑的时间 \(a[i]\), 一共骑了 cnt 次,并按时间排序;
设 \(f[i]\) 为骑完前 \(i\) 次的最小花费,\(ptr[i][j]\) 为如果第 \(i\) 次可以用到第 \(j\) 个卡,则最早在第 \(ptr[i][j]\) 次骑完后买卡
可列出朴素DP转移
for (int i = 1; i <= cnt; i++) { f[i] = f[i - 1] + r;//初始化为不买卡直接骑 for (int j = 1; j <= n; j++) { auto [d, k, c] = b[j]; for (int w = ptr[i][j]; w < i; w++) f[i] = min(f[i], f[w] + c); } }
-
由于 \(f[i]\) 是单调不减的,因此 \(f[i]=min(f[i],f[w]+c)\) 中 \(w=ptr[i][j]\) 时是最优的(也可以感性地感受一下,这样卡的利用率更高,这样好像倒推更好理解一点,有时间试试)
-
接下来就是需要求出 \(ptr[i][j]\),第一维可以优化掉,\(ptr[j]\) 表示第 i 次骑车时,最早需要 \(ptr[j]\)次后买第 j 种卡才能覆盖第 i 次
随着 \(i\) 增大,\(ptr[j]\) 不会回退,因此可以暴力 check,双指针维护
代码
#include <bits/stdc++.h>
using namespace std;
#define endl "\n"
typedef long long ll;
typedef pair<int, int> PII;
const int N = 3e5 + 10;
int n, m;
ll r;
struct Cards
{
ll d, k, c;
}b[510];
int a[N];//第i次的时间
int cnt;
ll f[N];//前i次的最小代价
int ptr[510];
bool check(int now, int card)
{
int last = ptr[card];
auto [d, k, c] = b[card];
if (last == now)
return true;
if (a[last] + d - 1 < a[now])
return false;
if (now - last + 1 > k)
return false;
return true;
}
int main()
{
ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
cin >> n >> m >> r;
for (int i = 1; i <= n; i++)
cin >> b[i].d >> b[i].k >> b[i].c;
for (int i = 1; i <= m; i++)
{
int p, q;
cin >> p >> q;
while(q--)
a[++cnt] = p;
}
sort(a + 1, a + cnt + 1);
for (int i = 1; i <= n; i++)
ptr[i] = 1;
for (int i = 1; i <= cnt; i++)
{
f[i] = f[i-1] + r;
for (int j = 1; j <= n; j++)
{
auto [d, k, c] = b[j];
// for (int w = ptr; w < i; w++)
// f[i] = min(f[i], f[w] + c);
// 因为f[i]单调递增,因此取w=x最小,ptr为在第ptr次后买优惠券,正好可以覆盖到第i次,双指针更新ptr
while(!check(i, j))
ptr[j]++;
f[i] = min(f[i], f[ptr[j] - 1] + c);
// cout << i << ": " << j << " " << ptr[j] << endl;
}
}
cout << f[cnt] << endl;
return 0;
}
标签:cnt,return,int,沈阳,2020icpc,last,now,ptr
From: https://www.cnblogs.com/hzy717zsy/p/16828508.html