https://github.com/Disdjj/prompt_in_code
ReAct普遍被用来进行外部工具调用, 但是其实现形式, 效果一般而且难以理解和维护.
本文就带来Code-Prompt下的ReAct模式, 即实现外部调用.
原理分析
ReAct的实现其实并不复杂:
- 提供Tools
- 提供Question, Thought, Action, Action Input, Observatio等等步骤
- 持续的重复调用, 思考, 观察的步骤, 直到最后得到结果
在Code-Prompt中, 我们可以用更加简单的方式来实现ReAct的核心功能: 调用外部工具, 获取最终结果, 而且我们完全可以实现批量的工具调用, 以及格式化的json返回, 效果更胜从前.
最关键的是, 可以使用廉价的4o-mini直接完成ReAct的任务, 性价比非常高.
Prompt
# YOU ARE A PROCESS, EXECUTE THE FOLLOWING CODE!
# ONLY OUTPUT THE CODE RESULT!
import json
# llm Package is yourself(LLM)'s ability
from llm import (
can_infer,
infer,
think,
)
from llm.io import (
input,
output,
)
from llm.tools import (
as_tool,
check_and_fix_parameters,
)
# tools
@as_tool
def quark_search(search_query: str) -> str:
"""
夸克搜索功能, 联网搜索
search_query: str - 搜索关键词或短语
Response:
str - 搜索结果摘要
"""
pass
@as_tool
def image_gen(query: str) -> str:
"""
生成图像, 给出描述的文本, 生成对应的图像
query: str - 中文关键词,描述了希望图像具有什么内容
Response:
str - 生成图像的URL
"""
pass
def react(query: str, steps: []) -> dict:
"""
根据query和steps来生成回答, 如果还无法回答, 则继续思考下一步
Args:
query: str - 用户的问题, 或者要解决的问题
steps: [] - 之前的步骤, 包含了用户的问题, 以及之前的思考和行动
Returns:
dict - 回答或者下一步的思考和行动
"""
if can_infer(query, steps):
return {
"FinalAnswer": infer(query, steps)
}
next_thought = think(f"how to solve '{query}' in next step?", steps)
next_tool = think(f"what tool should I use next to solve '{query}'?", steps) # function's name which decorated by the @as_tool decorator
tool_parameters = think(f"what parameters should I use for '{next_tool}'?")
tool_parameters = check_and_fix_parameters(tool_name=next_tool, old_parameters=tool_parameters) # as a dict which can call tool in **parameters
return {
"Thought": next_thought,
"Action": {
"tool": next_tool,
"parameters": tool_parameters
}
}
if __name__ == '__main__':
input("Start?(Y/N)")
query = "什么是DJJ?"
steps = []
res = react(query, steps)
output(json.dumps(res))
效果
过程调用
用户输入: Y
返回
{
"Thought": "To answer the query '什么是DJJ?', I need to first understand what 'DJJ' refers to. It could be an acronym, a name, or a specific term. I should perform a search to gather more information.",
"Action": {
"tool": "quark_search",
"parameters": {
"search_query": "DJJ"
}
}
}
最终结果
用户输入: Y
此时的Steps
steps = [
{
"Thought": "To answer the query '什么是DJJ?', I need to first understand what 'DJJ' refers to. It could be an acronym, a name, "
"or a specific term. I should perform a search to gather more information.",
"Action": {
"tool": "quark_search",
"parameters": {
"search_query": "DJJ"
}
}
},
{
"ActionResult": {
"quark_search": {
"explains": [
"DJJ是一种新型的数字货币,是一种去中心化的数字货币,是一种基于区块链技术的数字货币,是一种全球通用的数字货币",
"DJJ是一个虚拟的法律部门, Department of Joke Justice, 指的是一个虚拟的法律部门, 专门处理各种笑话、段子、梗、搞笑视频等的法律问题",
],
},
}
}
]
结果
{
"FinalAnswer": "DJJ 是一种新型的数字货币,是一种去中心化的数字货币,是一种基于区块链技术的数字货币,是一种全球通用的数字货币。此外,DJJ 也可以指一个虚拟的法律部门,Department of Joke Justice,专门处理各种笑话、段子、梗、搞笑视频等的法律问题。"
}
标签:03,search,Code,parameters,ToolUse,tool,str,query,DJJ
From: https://www.cnblogs.com/pDJJq/p/18412144/codeprompt03-tooluse-react-2gcmsu