首页 > 其他分享 >小众创新组合!LightGBM+BO-Transformer-LSTM多变量回归交通流量预测(Matlab)

小众创新组合!LightGBM+BO-Transformer-LSTM多变量回归交通流量预测(Matlab)

时间:2024-09-13 12:49:48浏览次数:15  
标签:Transformer LightGBM res BO 交通流量 num train test LSTM

小众创新组合!LightGBM+BO-Transformer-LSTM多变量回归交通流量预测(Matlab)

目录

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现LightGBM+BO-Transformer-LSTM多变量回归预测,LightGBM+BO-Transformer-LSTM/LightGBM+Bayes-Transformer-LSTM(程序可以作为一区级论文代码支撑,目前尚未发表);

2.LightGBM用于提取数据关键特征后输入BO-Transformer-LSTM模型之中,贝叶斯优化参数为:学习率,LSTM隐含层节点,正则化参数,运行环境为Matlab2023b及以上;

3.数据集excel,交通流数据,输入多个特征,输出单个变量,多变量回归预测,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价。

数据集
在这里插入图片描述

交通流量预测中的应用具有以下重要意义。
交通管理优化:交通流量预测是交通管理和规划中的关键环节。通过准确预测交通流量,交通管理者可以更好地调整交通信号、路线规划和交通管制,以提高道路利用率和减少交通拥堵。
城市规划:在城市规划领域,交通流量预测可以帮助规划者更好地了解城市交通流量的分布和趋势,从而指导城市道路建设、公共交通规划等工作。
智能交通系统:随着智能交通系统的发展,多变量回归在交通流量预测中的应用变得更加广泛。通过结合各种数据源(如交通摄像头、传感器数据、气象数据等),可以实现更准确的交通流量预测。
数据驱动决策:多变量回归可以帮助政府和交通管理部门做出基于数据的决策。通过分析历史数据和不同因素对交通流量的影响,可以制定更有效的交通管理策略。
环境保护:交通流量的准确预测也有助于减少交通拥堵对环境的影响。通过优化交通流量管理,可以减少车辆排放,改善空气质量。

程序设计

  • 完整程序和数据获取方式私信博主回复小众创新组合!LightGBM+BO-Transformer-LSTM多变量回归交通流量预测(Matlab)



%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('数据集.xlsx');

%%  加载工具箱
loadlibrary('lib_lightgbm.dll', 'c_api.h')

%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
%res = res(randperm(num_samples), :);        % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  矩阵转置
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';

%%  加载数据到 GBM
pv_train = lgbmDataset(p_train);
setField(pv_train, 'label', t_train);


参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340

标签:Transformer,LightGBM,res,BO,交通流量,num,train,test,LSTM
From: https://blog.csdn.net/kjm13182345320/article/details/142187556

相关文章

  • 毕业设计—Spingboot休闲食品类微博数据的可视分析方法研究 (案例分析)
    摘要信息化社会内需要与之针对性的信息获取途径,但是途径的扩展基本上为人们所努力的方向,由于站在的角度存在偏差,人们经常能够获得不同类型信息,这也是技术最为难以攻克的课题。针对休闲食品类微博数据等问题,对休闲食品类微博数据进行研究分析,然后开发设计出休闲食品类微博数......
  • 基于Java+Springboot+Mysql实现智能物业信息化管理系统功能设计与实现四
    一、前言介绍:1.1项目摘要现代社会对物业管理效率和服务质量不断提升的需求。随着城市化进程的加速和房地产市场的蓬勃发展,物业管理行业面临着越来越多的挑战和机遇。传统的物业管理方式往往依赖于人工操作和经验判断,效率低下且难以满足现代社会的需求。因此,借助信息化技......
  • Springboot冬季奥运会校园招生系统的设计与实现nk418
    本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。系统程序文件列表开题报告内容一、项目背景与意义随着冬季奥运会日益成为全球瞩目的体育盛事,培养具有国际视野和专业技能的冰雪运动人才成为重要任务。为了响应国家冰雪运动发展......
  • Springboot动物之家网站20338--(程序+源码+数据库+调试部署+开发环境)
    本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。系统程序文件列表开题报告内容一、项目背景在当今社会,随着人们对动物保护和自然生态的关注度不断提升,一个集动物科普、救助、交流于一体的平台显得尤为重要。为此,我们计划开发“......
  • Springboot电影售票管理系统swy1p--(程序+源码+数据库+调试部署+开发环境)
    本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。系统程序文件列表开题报告内容一、研究背景电影市场的繁荣促使影院售票管理日益复杂,高效、准确的售票系统成为影院运营的关键。传统的手工售票方式不仅效率低下,还容易出现错误,影......
  • 基于SpringBoot+Vue+uniapp的成绩管理系统(源码+lw+部署文档+讲解等)
    文章目录前言详细视频演示具体实现截图技术栈后端框架SpringBoot前端框架Vue持久层框架MyBaitsPlus系统测试系统测试目的系统功能测试系统测试结论为什么选择我代码参考数据库参考源码获取前言......